
Around the multigrid in a single slide
• Multigrid is a scalable method for solving linear equations. 
• Relaxation methods (smoother/smoothing operator in MG 

world) such as Gauss-Seidel efficiently damp high-
frequency error but do not eliminate low-frequency error. 

• The multigrid approach was developed in recognition that 
this low-frequency error can be accurately and efficiently 
solved on a coarser grid. 

• Multigrid method uniformly damps all frequencies of error 
components with a computational cost that depends only 
linearly on the problem size (=scalable).
– Good for large-scale computations

• Multigrid is also a good preconditioning algorithm for Krylov
iterative solvers.
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Multigrid is scalable
Weak Scaling: Problem Size/Core Fixed

for 3D Poisson Eqn’s (q)
MGCG= Conjugate Gradient with Multigrid Preconditioning
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Multigrid is scalable
Weak Scaling: Problem Size/Core Fixed

Comp. time of MGCG for weak scaling is constant: 
=> scalable

0

500

1000

1500

2000

2500

3000

1.E+06 1.E+07 1.E+08

Ite
ra

tio
ns

DOF

ICCG
MGCG

16 32
64 128

6ISS-2013



Procedure of Multigrid (1/3)
7

Multigrid is a scalable method for solving linear equations. Relaxation methods 
such as Gauss-Seidel efficiently damp high-frequency error but do not eliminate 
low-frequency error. The multigrid approach was developed in recognition that 
this low-frequency error can be accurately and efficiently solved on a coarser 
grid. This concept is explained here in the following simple 2-level method. If we 
have obtained the following linear system on a fine grid :

AF uF = f

and AC as the discrete form of the operator on the coarse grid, a simple coarse 
grid correction can be given by :

uF
(i+1) = uF

(i) + RT AC
-1 R ( f - AF uF

(i) )

where RT is the matrix representation of linear interpolation from the coarse grid 
to the fine grid (prolongation operator) and R is called the restriction operator. 
Thus, it is possible to calculate the residual on the fine grid, solve the coarse 
grid problem, and interpolate the coarse grid solution on the fine grid. 
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Procedure of Multigrid (2/3)
8

This process can be described as follows :

1. Relax the equations on the fine grid and obtain the result uF
(i)

= SF ( AF, f ). This operator SF (e.g., Gauss-Seidel) is called 
the smoothing operator (or ).

2. Calculate the residual term on the fine grid by rF = f - AF uF
(i).

3. Restrict the residual term on to the coarse grid by rC = R rF.
4. Solve the equation AC uC = rC on the coarse grid ; the 

accuracy of the solution on the coarse grid affects the 
convergence of the entire multigrid system.

5. Interpolate (or prolong) the coarse grid correction on the fine 
grid by DuC

(i) = RT uC.
6. Update the solution on the fine grid by uF

(i+1) = uF
(i) + DuC

(i)
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Procedure of Multigrid (3/3)
10

• Recursive application of this algorithm for 2-level procedure to 
consecutive systems of coarse-grid equations gives a multigrid V-
cycle. If the components of the V-cycle are defined appropriately, 
the result is a method that uniformly damps all frequencies of error 
with a computational cost that depends only linearly on the 
problem size. 
− In other words, multigrid algorithms are scalable.

• In the V-cycle, starting with the finest grid, all subsequent coarser 
grids are visited only once. 
− In the down-cycle, smoothers damp oscillatory error components at different 

grid scales. 
− In the up-cycle, the smooth error components remaining on each grid level 

are corrected using the error approximations on the coarser grids. 
• Alternatively, in a W-cycle, the coarser grids are solved more 

rigorously in order to reduce residuals as much as possible before 
going back to the more expensive finer grids.
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Multigrid as a Preconditioner
12

• Multigrid algorithms tend to be problem-specific 
solutions and less robust than preconditioned Krylov
iterative methods such as the IC/ILU methods. 

• Fortunately, it is easy to combine the best features of 
multigrid and Krylov iterative methods into one algorithm
− multigrid-preconditioned Krylov iterative methods. 

• The resulting algorithm is robust, efficient and scalable.

• Mutigrid solvers and Krylov iterative solvers 
preconditioned by multigrid are intrinsically suitable for 
parallel computing. 
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Geometric and Algebraic Multigrid
13

• One of the most important issues in multigrid is the 
construction of the coarse grids. 

• There are 2 basic multigrid approaches
− geometric and algebraic 

• In geometric multigrid, the geometry of the problem is 
used to define the various multigrid components. 

• In contrast, algebraic multigrid methods use only the 
information available in the linear system of equations, 
such as matrix connectivity. 

• Algebraic multigrid method (AMG) is suitable for 
applications with unstructured grids. 

• Many tools for both geometric and algebraic methods on 
unstructured grids have been developed.
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“Dark Side” of Multigrid Method
14

• Its performance is excellent for well-conditioned simple 
problems, such as homogeneous Poisson equations.

• But convergence could be worse for ill-conditioned 
problems.

• Extension of applicability of multigrid method is an active 
research area.
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