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Strategies for Preconditioning Methods of Parallel 
Iterative Solvers for Finite-Element Applications 
in Geophysics 

1 Background 

1.1  Why Preconditioned Iterative Solvers?  

Solving large-scale systems of linear equations [ ]{ } { }bxA =  is one of the 
most expensive and critical processes in scientific computing. In particular, 
for simulation codes based on the finite-element method (FEM), most of the 
computational time is devoted to solving linear equation systems with 
sparse coefficient matrices. For this reason, a significant proportion of 
scalable algorithm research and development is aimed at solving these large, 
sparse linear systems of equations on parallel computers. Sparse linear 
solvers can be broadly classified as being either direct or iterative.  

Direct solvers, such as Gaussian elimination and LU factorization, are 
based on a factorization of the associated sparse matrix. They are extremely 
robust and yield the exact solution of [ ]{ } { }bxA = after a finite number of 
steps without round-off errors. However, their memory requirements grow 
as a nonlinear function of the matrix size because initially zero components 
of the original matrix fill in during factorization. In contrast, iterative 
methods are memory scalable. Iterative methods are therefore the only 
choice for large-scale simulations by massively parallel computers. While 
iterative methods are memory scalable, a disadvantage is that their con-
vergence can be slow or they can fail to converge. The rate of convergence 
of iterative methods depends strongly on the spectrum of the coefficient 
matrix. Hence, iterative methods usually involve a second matrix that 
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transforms the coefficient matrix to a matrix with a more favorable spec-
trum. This transformation matrix is called a preconditioner. The im-
provement in the convergence of an iterative method yielded by the ap-
plication of an effective preconditioner outweighs the extra cost of 
constructing and applying it. Indeed, without a preconditioner the iterative 
method may even fail to converge.  

In preconditioned iterative methods, the original linear equation: 

[ ]{ } { }bxA =  (1) 

is transformed into the following Eq. (2) using the preconditioner (or pre-
conditioning matrix) [ ]M :  

[ ]{ } { } [ ] [ ] [ ] { } [ ] { }bMbAMAbxA 11 ~,~,~~ −− ===  (2) 

Equation (2) has the same solution as Eq. (1), but the spectral properties of 
the coefficient matrix [ ] [ ] [ ]AMA 1~ −=  may be more favorable, facilitating a 
faster convergence.   

Various types of preconditioners have been proposed, developed and 
applied. The simplest method is called diagonal scaling or the point Jacobi 
method, where [ ]M  is given by the diagonal components of the original 
coefficient matrix [ ]A . Jacobi, Gauss-Seidel and SOR type stationary it-
erative methods are also well-known preconditioners, while preconditioners 
using various types of polynomials have also been widely used (Barrett et al. 
1994).  

The incomplete lower-upper (ILU) and incomplete Cholesky (IC) fac-
torization methods are the most popular preconditioning techniques for 
accelerating the convergence of Krylov iterative methods (Barrett et al. 
1994). These ILU/IC methods are based on LU/Cholesky factorization used 
in direct solution techniques. LU factorization is applicable to general 
un-symmetric matrices, while Cholesky is applicable to symmetric matri-
ces. In LU/Cholesky factorization, many fill-ins are introduced during the 
factorization process, and so the factorized matrix can be dense even if the 
original matrix is sparse. ILU(p)/IC(p) is an incomplete factorization in 
which p-th-order fill-ins are allowed. Larger values of p provide a more 
accurate factorization and usually lead to robust preconditioning, but are 
more expensive in both memory and CPU time. In many engineering ap-
plications, ILU(0)/IC(0) is widely used where there are no fill-ins and the 
non-zero pattern of the original coefficient matrix is maintained in the fac-
torized matrix. 

Au: “Barret” has been 
changed to “Barrett” in
all occurrences, in or-
der to match with the 
reference. Is this OK? 
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1.2  Selective Blocking Preconditioning for Contact Problems 

1.2.1 GeoFEM Project 

From 1999 to 2002, the author developed parallel iterative solvers and 
preconditioning methods for geophysics problems in the GeoFEM project,1 
which develops a parallel finite-element platform for solid earth simulation 
on the Earth Simulator.2  One of the most important applications of 
GeoFEM is the simulation of the stress accumulation process at plate 
boundaries (faults), which is critical for estimating the earthquake genera-

around zones with higher stress accumulations, and so more than hundreds 
of millions of meshes may be required for detailed simulations. In this type 
of simulation, material, geometric and boundary nonlinearity should be 
considered. Among these, boundary nonlinearity due to the contact of 
faults is the most critical. In GeoFEM, the augmented Lagrange method 
(ALM) and penalty method are implemented, with a large penalty number, 
λ, introduced for constraint conditions around faults (Iizuka et al. 2000). 
The nonlinear process is solved iteratively by the Newton-Raphson (NR) 
method. A large λ (~103 × Young’s modulus) can provide an accurate so-
lution and fast nonlinear convergence for NR processes, but the condition 
number of the coefficient matrices of the corresponding linear equations is 
large, and several iterations are required for the convergence of iterative 
solvers (Fig. 3). Therefore, a robust preconditioning method is essential for 
such ill-conditioned problems. 

 

 

 

 

 

 

 

Fig. 1  Subductive plate boundaries (faults) around Japanese Islands and an exam-
ple of the finite-element model 

                                                      
1 http://geofem.tokyo.rist.or.jp/ 
2 http://www.es.jamstec.go.jp/ 

Eurasia

Philippine

PacificEurasia

Philippine

Pacific
 

tion cycle (Figs. 1 and 2). A fine resolution (less than 1 km) is required 



UN
CO

RR
EC

TE
D 

PR
O

O
F

68      K. Nakajima 

 

 

 

 

 

 

 

 

Fig. 2 Example of the finite-element model with locally refined meshes for a 
transcurrent fault (movie available on accompanying DVD) 

 

 

 
 
 

 
 
 
 
 
 
 
 
  
 
Fig. 3 Typical relationship between λ (penalty number) and the required number 
of iterations in contact simulations by ALM (Iizuka et al. 2000) 
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1.2.2 Selective Blocking 

Selective blocking is a special preconditioning method developed for this 
type of application by the author on GeoFEM’s framework (Nakajima 
2003, Nakajima and Okuda 2004). In this method, finite element nodes in 
the same contact group coupled through penalty constraints are placed into 
a large block (selective block or super node) (Fig. 4). For symmetric posi-
tive definite matrices, preconditioning with block incomplete Cholesky 
factorization using selective blocking (SB-BIC) yields an excellent per-
formance and robustness (Nakajima 2003, Nakajima and Okuda 2004). 
Details of the parallel iterative solvers of GeoFEM and algorithm of selec-
tive blocking are described in Appendices 1 and 2 of this chapter. 

 

 

 

 

 

 

 

 

 

Fig. 4  Matrix operation of nodes in contact groups for selective blocking precon-
ditioning 
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1.3  Overview of this Work 

Contact phenomena are one of the most important and critical issues in 
various types of scientific and engineering problems. In previous works 
(Nakajima 2003, Nakajima and Okuda 2004), the numbers of nodes in 
contact groups are consistent, and conditions for infinitesimal deformation 
have been also assumed, as shown in Fig. 5a. With this approach, the posi-
tions of nodes do not change and a consistent relationship among nodes in 
contact groups is maintained during the simulation. Moreover, a special 
partitioning method, where all nodes in the same contact group are located 
in the same domain, has been applied, as shown in Appendix 2. However, 

In (Nakajima 2007a), new parallel preconditioning methods for this 
type of general contact problem have been developed. These methods 
comprise two parts: One part is a preconditioning method with selective 
fill-ins, in which fill-ins of higher order are introduced only for nodes con-
nected to special contact-condition elements. 

The other part is the extension of overlapped elements between do-
mains. It is widely known that convergence of parallel finite-element ap-
plications with preconditioned iterative solvers strongly depends on 
method of domain decomposition. In (Nakajima 2007a), the selective 
overlapping method was proposed, which extends the layers of overlapped 
elements according to the information of the special elements used for 
contact conditions. Both methods are based on the idea of selective block-
ing, but are more general and flexible than that approach. 

These methods are very unique, because dropping rules of the precon-
ditioning matrices are defined according to properties of individual fi-
nite-element and features of finite-element applications before assembling 
entire coefficient matrices. 

In addition, the following two methods are further introduced in this 
work:  

 
• Local reordering in distributed data 
• Hierarchical Interface Decomposition (HID) (Henon and Saad 2007) 
 

this approach is not therefore flexible, and cannot be applied to fault contact 
simulations with large slip/deformation and to simulations of assembly 
structures in engineering fields (Fig. 6), where the numbers and positions of 
nodes in contact groups may be inconsistent, as shown in Fig. 5b. In this 
situation, number of finite-element nodes in each selective block might be 
very large. If the size of selective block is more than 103, preconditioning 
with full LU factorization for each block is very expensive. 
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HID provides a method of domain decomposition with robustness and 
scalability for parallel ILU/IC preconditioners. The robustness and effi-
ciency of HID and selective overlapping are compared in this work. 

In the following part of this chapter, these four methods (selective 
fill-ins, selective overlapping, local reordering and HID) are reviewed in 
detail. These methods are implemented as preconditioners of iterative 
solvers for parallel finite-element applications for ill-conditioned prob-
lems. Parallel codes are based on the framework for parallel FEM proce-
dures of GeoFEM, and the GeoFEM’s local data structure (ref. Appendix 1) 
is applied. 

The results of example problems with contact conditions using 64-core 
PC clusters are shown. Finally, the developed methods are applied to gen-
eral ill-conditioned problems for problems with heterogeneous material 
properties. 

 

 

 

 

 

 

 

 

 

(a) Consistent                  (b) Inconsistent 

Fig. 5  Consistent and inconsistent node numbers at contact surfaces in FEM 
models applied to contact simulations 

Fig. 6  Example of an assembly structure: Jet Engine 
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2  Various Approaches for Parallel Preconditioning 
Methods in Ill-Conditioned Problems 

2.1  Selective Fill-Ins 

The selective blocking preconditioning method (Nakajima and Okuda 
2004) is a robust and efficient preconditioning method for contact prob-
lems. However, it can only be applied in a very limited number of situa-
tions, as shown in the previous section. 

Incomplete LU factorization with p-th-order fill-in (ILU(p)) precondi-
tioning methods are widely used for various types of applications (Saad 
2003). The higher the order of fill-ins (p) is, the more robust the precondi-
tioner will be, but this normally comes at the cost of being computationally 
more expensive. The required memory for coefficient matrices increases 
by a factor of from 2 to 5 if the order of fill-ins (p) increases from 0 to 1, 
or from 1 to 2 (Nakajima and Okuda 2004).   

  

 

 

 

 

 

 

 

Fig. 7  Example of the ILU(1+) preconditioning technique 

In (Nakajima 2007a), new preconditioning methods for general contact 
problems have been developed. The first approach is a preconditioning 
method with selective fill-ins, called ILU(p+). Figure 7 describes the prin-
ciple of ILU(p+). Denoting the i,j-th component of the preconditioner ma-
trix by mij, in ILU(p+), (p+1)-th order fill-ins are allowed for mij such that 
both the i-th and j-th nodes are connected to special contact-condition ele-
ments, such as master-slave type elements (Iizuka et al. 2000). In Fig. 7, 
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second-order fill-ins can be allowed for all three i-j pairs, according to 
graphical connectivity information. However, in the ILU(p+) precondi-
tioning approach, only the white circles are allowed to generate sec-
ond-order fill-ins. 

This approach closely resembles that of selective blocking, in which 
full LU factorization is applied to nodes in contact groups, but is much 
more general and flexible. Since constraint conditions are applied to the 
nodes that are connected to special elements through penalty terms, selec-
tive ILU factorization with higher order fill-ins for these nodes is expected 
to provide robust convergence with efficiency. In (Washio et al. 2005), a 
preconditioning method with block ILU factorization is proposed for cou-
pled equations of incompressible fluid flow and solid structure. Different 
orders of fill-ins are applied to velocity and pressure components to gener-
ate block ILU factorization of coefficient matrices. ILU(p+) is very similar 
to this idea. 

Figure 8 describes the model used for the validation of the developed 
preconditioning methods. This problem simulates general contact condi-
tions, in which the positions and number of nodes on contact surfaces are 
inconsistent. In this model there are four blocks of elastic material that are 
discretized into cubic tri-linear type finite-elements. Each block is con-
nected through elastic truss elements generated at each node on the contact 
surfaces. The truss elements together take up the form of a cross, as shown 
in Fig. 8. In the present case, the elastic coefficient of the truss elements is 
set to 103 times that of the solid elements, which corresponds to the coeffi-
cient λ (=103) for constraint conditions of the augmented Lagrangian 
method (ALM). Poisson’s ratio is set to 0.25 for the cubic elements. 

Symmetric boundary conditions are applied at the x=0 and y=0 sur-
faces, while a Dirichlet fixed condition for deformation in the direction of 
the z-axis is applied to z=0 surfaces. Finally, a uniform distributed load in 
the direction of the z-axis is applied to z=Zmax surfaces. This problem lies in 
the area of linear elasticity, but the coefficient matrices are particularly 
ill-conditioned, and so this problem provides a good simulation of nonlin-
ear contact problems (Nakajima 2003, Nakajima and Okuda 2004). 
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Fig. 8  Elastic blocks connected through truss elements 

The plots in Fig. 9 display results describing the performance of four 
preconditioning techniques for the problem in linear elasticity described 
above. All calculations were performed using a single core of AMD Op-
teron 275 (2.2 GHz)3 with PGI FORTAN90 compiler.4 Each block in 
Fig. 8 has 8,192 (=16×16×32) cubes, where the total problem size has 
107,811 degrees of freedom (DOF). Generalized product-type methods 
based on Bi-CG (GPBi-CG) (Zhang 1997) for general coefficient matrices 
have been applied as an iterative method, although the coefficient matrices 
for this problem are positive indefinite. Each node has three DOF in each 
axis in 3D solid mechanics; therefore, block ILU (BILU) type precondi-
tioning (Nakajima 2003, Nakajima and Okuda 2004) has been applied.  

BILU(1+), in which additional selective fill-ins to BILU(1) have been 
applied for nodes connected to special elements (elastic truss elements in 
Fig. 8), provides the most robust and efficient convergence. BILU(p) pro-
vides faster convergence the larger the value of p, as shown in Fig. 9b, but 
is also more computationally expensive with increasing p, as shown in 
Fig. 9c, where the number of off-diagonal components in preconditioning 
matrices [M] is described. BILU(1) and BILU(1+) are competitive, but 
BILU(1+) provides a better convergence rate. 

                                                      
3 http://www.amd.com/ 
4 http://www.pgroup.com/ 
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(a) Computation time 

 

 

 

 

 

 

 

(b) Iterations for convergence 

 

 

 

 

 

 

 

(c) Off-diagonal component # 

 

 

 

 

 

 

 

 Fig. 9 Results for the problem in linear elasticity, whose configuration is given in 
Fig. 8, considering simple cube geometries of 107,811 DOF with contact condi-
tions on a single core of AMD Opteron 275 (2.2 GHz) with the PGI FORTRAN90 
compiler 
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2.2  Selective Overlapping 

The second approach proposed here is the extension of overlapped zones 
between domains for parallel computing. The GeoFEM local data struc-
ture, which has been applied in previous works (Nakajima 2003, Nakajima 
and Okuda 2004), is node-based with a single layer of overlapped elements 
(the depth of overlapping is 1) and is appropriate for parallel iterative 
solvers with block Jacobi-type localized preconditioning methods. Figure 
10 shows an example of the local data for contact problems, in which the 
depth of overlapping is 1. 

In (Nakajima 2007a), a larger number of layers of overlapped elements 
were considered to improve the robustness of parallel preconditioners. 
Generally speaking, a larger depth of overlapped layers provides faster 
convergence in block Jacobi-type localized preconditioning methods, 

In (Nakajima 2007a), the selective overlapping method was proposed. 
As is illustrated in Fig. 11, for the process of extending overlapped areas, 
this method gives priority to those nodes connected to special con-
tact-condition elements. In particular, in selective overlapping, the exten-
sion of overlapping to nodes that are not connected to special con-
tact-condition elements is delayed. For example, the hatched elements 
shown in the selective overlapping plots of Fig. 11 would be included as 
extended overlapped elements in a conventional overlapping extension. 
However, in selective overlapping, the extension of overlapping to include 
these elements is delayed, and is instead performed at the next stage of 
overlapping. Thus, the increases in computation and communication costs 
due to the extension of the overlapped elements are reduced. 

This idea is also an extension of the idea of selective blocking, and is 
also based on the idea of special partitioning strategy for contact problems, 
developed in (Nakajima and Okuda 2004). The convergence rate of paral-
lel iterative solvers with block Jacobi-type localized preconditioning is 
generally poor, because the edge-cut may occur at inter-domain boundary 
edges that are included in contact groups (Nakajima and Okuda 2004). All 
nodes in the same contact group should be in the same domain in order to 
avoid such edge-cuts. Because the constraint conditions are applied to 
those nodes that are connected to special elements through penalty terms, 
the selective extension of overlapping for these nodes is expected to pro-
vide robust convergence with efficiency. 

 

 

but at the expense of increasing computation and communication costs 
(Nakajima 2005). 
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Fig. 10  Example of GeoFEM’s local data structure for contact problems 
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Fig. 11 Example of selective overlapping, precedence for extensions of over-
lapped layers is given to nodes connected to special contact-condition elements 
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2.3  Local Reordering in Distributed Data 

It is widely known that the reordering of vertices strongly affects the conver-
gence of iterative solvers with ILU-type preconditioners (Nakajima 2007b).  

As shown in Appendix 1, nodes in each local mesh data of the GeoFEM 
data structure are classified into the following three categories from the 
viewpoint of message passing: 
 
• Internal nodes (originally assigned to the domain) 
• External nodes (forming an element in the domain, but are from external 

domains) 
• Boundary nodes (external nodes of other domains) 
 
Figure 12 describes a very simple example, where an initial entire mesh 
comprising 18 nodes and 10 quadrilateral elements is partitioned into two 
domains. Local numbering starts from the internal nodes. The external 
nodes are numbered after all the internal nodes have been numbered, as 
shown in Fig. 12. According to this numbering method, the bandwidth of 
local sparse coefficient matrices including the external nodes is relatively 
large, as shown in Fig. 12. Coefficient matrices with larger bandwidth usu-
ally provide slower convergence for iterative solvers with ILU-type pre-
conditioning methods (Saad 2003). As long as block Jacobi-type fully lo-
calized preconditioning methods in Nakajima (2003) are adopted, this 
effect of bandwidth is rather smaller. But if overlapping among domain is 
applied, this effect may be more significant. 

In this work, a global numbering is introduced, where both the internal 
and external nodes in each domain are reordered according to their original 
global ID. Figure 13 shows local data meshes obtained through this global 
numbering, and corresponding local coefficient matrices. It may be noted 
that the bandwidth of local coefficient matrices is smaller than that of 
original matrices in Fig. 12.  

The Reverse Cuthill-Mckee (RCM) method is a well-known reordering 
technique, which is also suitable for reducing the bandwidth of sparse ma-
trices (Nakajima 2003, Saad 2003). In the previous works (Nakajima 2003, 
Nakajima 2007b), RCM reordering has been applied to internal nodes for 
parallel efficiency. In this work, the following two types of approaches 
have been applied:  

 
• RCM is applied only to internal nodes (Fig. 14) 

− local numbering with RCM-internal 
• RCM is applied to both internal and external nodes (Fig. 15) 

− local numbering with RCM-entire 
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Fig. 12  An initial entire mesh with global node ID, local domains with local node 
ID and local coefficient matrices for two domains 

 

 

 

 

 

 

 

 

 

 

Fig. 13  Local domains and coefficient matrices according to global numbering 
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 Fig. 14  Local domains and coefficient matrices with RCM-internal reordering 

 

 

 

 

 

 

 

 

 

 

 
Fig. 15 Local domains and coefficient matrices with RCM-entire reordering 
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2.4  HID (Hierarchical Interface Decomposition) 

The Parallel Hierarchical Interface Decomposition Algorithm (PHIDAL) 
provides robustness and scalability for parallel ILU/IC preconditioners 
(Henon and Saad 2007). PHIDAL is based on defining “hierarchical in-
terface decomposition (HID)”. The HID process starts with a partitioning 
of the graph, with one layer of overlap. The “levels” are defined from this 
partitioning, with each level consisting of a set of vertex groups. Each ver-
tex group of a given level is a separator for vertex groups of a lower level. 
The incomplete factorization process proceeds by “level” from lowest to 
highest. Due to the separation property of the vertex groups at different 
levels, this process can be carried out in a highly parallel manner. In (He-
non and Saad (2007), the concept of connectors (small connected 
sub-graphs) of different levels and keys are introduced for the purposes of 
applying this idea to general graphs as follows:  
 
• Connectors of level-1 (C1) are the sets of interior points. Each set of in-

terior points is called a sub-domain. 
• A connector of level-k (Ck) (k>1) is adjacent to k sub-domains. 
• No Ck is adjacent to any other connector of level-k. 
• Key(u) is the set of sub-domains (connectors of level-1, C1) connected to 

vertex u. 
 
Figure 16 shows the example of the partition of a 9-point grid into 4 do-
mains. In this case, there are 4 connectors of level-1 (C1, sub-domain), 4 
connectors of level-2 (C2) and 1 connector of level-4 (C4). Note that dif-
ferent connectors of the same level are not connected directly, but are 
separated by connectors of higher levels. These properties induce a block 
structure of the coefficient matrix [A] through reordering the unknowns by 
this decomposition. If the unknowns are reordered according to their level 
numbers, from the lowest to highest, the block structure of the reordered 
matrix is as shown in Fig. 17. This block structure leads to a natural paral-
lelism if ILU/IC decompositions or forward/backward substitution proc-
esses are applied. Figure 18 provides algorithms for the construction of 
independent connectors (Henon and Saad 2007). Thus, 
HID/PHIDAL-based ILU/IC preconditioners can consider the global effect 
of external domains in parallel computations, and are expected to be more 
robust than block Jacobi-type localized ones. In this work, HID and selec-
tive overlapping are compared from this point of view. 

In (Nakajima 2007b), GeoFEM’s original partitioner for domain de-
composition was modified so that it could create a distributed hierarchical 
data structure for HID. Each sub-domain (interior vertices, connectors of 
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level-1) is assigned to an individual domain, which corresponds to each 
MPI process. Higher-level connectors are distributed to each domain so 
that load-balancing can be attained and communications can be minimized. 
Figure 19 shows an example of the final partition of a 9-point grid into 4 
sub-domains. 

 

 

 

 

 

 

 

 

(a) Initial entire grid           (b) Connectors and levels 

Fig. 16  HID partitioning of a 9-point grid into 4 sub-domains 

 

 

 

 

 

 

 
 
(a) Domain decomposition            (b) matrix and non-empty blocks 

       (connectors and keys) 

 Fig. 17  Domain/block decomposition of the coefficient matrix according to HID 
reordering 
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Fig. 18  Algorithms for HID processes (Henon and Saad 2007) 

Initialization:
for each vertex u∈V

Key(u) := list of subdomains containing vertex u
end
for each vertex u∈V

Kdegu := |{v∈Vl(u) / Key(v)≠Key(u)}|
end
for l = 1, to p do:

Ll= {u∈V / |Key(u)| = = l}
end

Initialization:
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end
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Kdegu := |{v∈Vl(u) / Key(v)≠Key(u)}|
end
for l = 1, to p do:

Ll= {u∈V / |Key(u)| = = l}
end

Main Loop:
for l = 2 to p do:

for each vertex u∈Ll do:

end
while all vertices in Ll have not been processed;

get u the vertex in Ll such that Kdegu is maximum.

m = |Key(u)|
if m > l  then

Ll := Ll ＼ {u}
Lm := Lm ∪ {u}
for each vertex v∈Vl(u)

Kdegv := Kdegv - 1
end

endif
end

end
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(a) Final partition (number’s correspond to ID of partition (0-3)) 

                                                           

 

 

 

 

 

 

 

 

 

 

 

 

 
(b) Distributed local data sets with external vertices 

Fig. 19 The final partition of a 9-point grid into 4 domains 
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3  Examples: Contact Problems 

3.1  Effect of Selective Fill-Ins and Selective Overlapping 

Partitioning was applied in an RCB (recursive coordinate bisection) 
manner (Simon 1991), and the entire domain has been partitioned into 64 
local data sets. The initial local numbering procedure shown in Fig. 12 has 
been applied to each local data set.  

Generally speaking, the convergence rate is improved by the extension 
of overlapping (Fig. 20b). This is particularly significant when the depth of 
overlapping (d) is increased from (d=0) and (d=1) to (d=1+), because 
edge-cuts may occur at truss elements for contact conditions if the depth of 
overlapping is 0 or 1. However, the decrease in the number of iterations 
required for convergence is comparatively small for further rises in d if the 
depth of overlapping is greater than 2.  

It can also be seen that the number of off-diagonal components of the 
preconditioned matrices [M] increases as the depth of overlapping in-
creases (Fig. 20c). Finally, computations using large depths of overlapping 
are more expensive, as may be seen in Fig. 20a, where the computational 
time increases as the depth of overlapping increases from values larger 
than 2 (Fig. 20a). Methods BILU(1)-(1+) and BILU(1+)-(1+) offer the 
best performance, and these two methods are closely matched. 

                                                      
5 http://www.pathscale.com/ 
6 http://www.infinibandta.org/ 

The plots in Fig. 20 compare the effect of different overlapping strategies on 
results obtained for the problem in linear elasticity described by Fig. 8. 
Results were obtained using 64 cores of an AMD Opteron 275 cluster with a 
PGI FORTAN90 compiler and Pathscale MPI5 connected through an In-
finiband6 network. Each block in Fig. 8 has 250,000 (=50×50×100) cubes, 
yielding a total problem size of 3,090,903 DOF. The effect of the extension 
of overlapping is evaluated for BILU(1), BILU(1+), and BILU(2). Here 
BILU(p)-(d) means BILU(p) preconditioning, where the depth of over-
lapping is equal to d. The local data with a single layer of overlapped ele-
ments, shown in Fig. 10, is applied to both of (d=0) and (d=1). In (d=0), 
effect of external nodes are not considered at all during ILU/IC decompo-
sitions and forward/backward substitution processes. Therefore, 
BILU(p)-(0) corresponds to pure block Jacobi-type localized precondi-
tioning method, which provides excellent parallel efficiency, but is not ro-
bust for ill-conditioned problems. In (d=1), effect of external nodes are 
considered in preconditioning and forward/backward substitution processes. 
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(a) Computation time          

 

 

 

 

 

 

 

(b) Iterations for convergence     

 

 

 

 

 

 

 

 

(c) Off-diagonal component # 

 

 

 

 

 

 

 

 

Fig. 20  Results detailing the effect of overlapping for the model problem consid-
ering simple cube geometries of 3,090,903 DOF with contact conditions in linear 
elasticity described by Fig. 8 on 64 cores of AMD Opteron 275 cluster using the 
PGI compiler 
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3.2  Effect of Local Reordering 

Generally speaking, global numbering, RCM-internal and RCM-entire 
provide superior convergence to that of initial local numbering. 
RCM-entire attains the best performance and robustness, while Global 
numbering and RCM-internal are competitive from the view point of the 
number of iterations required for convergence (Fig. 21b). The computa-
tional cost of RCM-internal is, however, slightly more expensive than 
global numbering (Fig. 21a), because BILU(p) factorization provides more 
fill-ins in RCM-internal than global numbering, as shown in Fig. 21c.   

The plots in Fig. 21 show the effect of the extension of overlapping for 
BILU(1+), which was the best performing method of Sect. 3.1, on various 
types of orderings/numberings for the same test problem considered in 
Sect. 3.1, The numbering strategies considered here are the initial local 
numbering (Fig. 12), global numbering (Fig. 13), local numbering with 
RCM-internal (Fig. 14) and local numbering with RCM-entire (Fig. 15).  
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(a) Computation time          
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Fig. 21  Effect of overlapping and local reordering for BILU(1+) in linear-elastic 
problem for simple cube geometries of 3,090,903 DOF with contact conditions in 
Fig. 8 on 64 cores of AMD Opteron 275 cluster with PGI compiler 
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3.3  Effect of HID 

In this section, the robustness and efficiency of HID is compared with that 
of selective overlapping. The plots in Fig. 22 compare the performance of 
BILU(1), BILU(1+), BILU(2) preconditioning for (d=0), (d=1) and 
(d=1+) overlapping using local numbering with RCM-entire with that of 
the same preconditioners applied in conjunction with HID.  

The depth of overlapping for each local data set provided by HID cor-
responds to (d=0) and is thus in particular smaller than (d=1), as shown in 

Figures 22a and b show that BILU(1)/BILU(1+)/BILU(2) precondi-
tioners applied with HID are faster and more robust than 
BILU(1)/BILU(1+)/BILU(2)-(d=1), and are almost competitive with 
BILU(1)/BILU(1+)/BILU(2)-(d=1+), although BILU(p)-(d=1+) is 
slightly better. 

The block structure of the reordered matrix in HID leads to natural par-
allelism in ILU/IC computations. Thus, HID/PHIDAL-based ILU/IC pre-
conditioners can consider the global effect of external domains in parallel 
computations. Therefore, although the cost of HID is as cheap as (d=0) 
overlapping, its convergence may be as robust as (d=1+) in ill-conditioned 
problems. 

 

 

 

Fig. 19. Figure 22c also shows that cost of HID is competitive with that of 
(d=0)
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(a) Computation time          

 

 

 

 

 

 

 

(b) Iterations for convergence     
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Fig. 22  The effect of overlapping in comparison with HID for the problem in lin-
ear elasticity considering simple cube geometries of 3,090,903 DOF with contact 
conditions as shown in Fig. 8, on 64 cores of AMD Opteron 275 cluster using the 
PGI compiler, RCM-entire reordering applied 
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4  Examples: Linear-Elastic Problems with Heterogeneous 
Material Properties 

4.1  BILU(p+,ω)-(d+,α) 

In (Nakajima 2007a), the BILU(p)-(d) method for contact problems was 
extended to BILU(p+,ω)-(d+,α) for ill-conditioned problems with hetero-
geneous material properties, such as that shown in Fig. 23 (available on 
accompanying DVD), where ω and α are threshold parameters for the ex-
tension of fill-ins and overlapping. 

Fig. 23  Heterogeneous distribution of a material property, and groundwater flow 
through heterogeneous porous media (movie available on accompanying DVD) 

In applications developed for a heterogeneous distribution of material 
properties, the coefficient matrices for linear solvers are generally ill-
conditioned and the rate of convergence is poor. In BILU(p+,ω)-(d+,α), 
(p+1)-th-order fill-ins are allowed for pairs of nodes if both nodes are 
connected to elements for which the Young’s modulus is greater than ω, 
while selective overlapping is applied to nodes if the nodes are connected to 
elements for which the Young’s modulus is greater than α, as shown in 
Fig. 24. 
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Fig. 24  Selective fill-ins and overlapping for a heterogeneous field 

4.2 Problem Description 

Figure 25 describes the boundary conditions for a model problem in linear 
elasticity considering heterogeneous material of simple cubic geometry. 
Each element is a cubic tri-linear type finite-element. Poisson’s ratio is set 
to 0.25 for all elements, while the heterogeneous distribution of Young’s 
modulus in each tri-linear element is calculated by a sequential Gauss al-
gorithm, which is widely used in the area of geo-statistics (Deutsch and 
Journel 1998). The minimum and maximum values of Young’s modulus 
are 10–3 and 103, respectively, where the average value is 1.0.  

Symmetric boundary conditions are applied to the x = 0 and y = 0 sur-
faces, and the Dirichlet fixed condition for deformation in the direction of 
the z-axis is applied at z = 0. Finally, a uniform distributed load in the di-
rection of the z-axis is applied at the z = Zmax surface. This problem is line-
arly elastic, but the coefficient matrices are particularly ill-conditioned.  

The GPBi-CG method for general coefficient matrices is used here as 
the iterative solution technique, although the coefficient matrices of this 
problems are positive indefinite. Each node has three DOF in each axis in 
3D solid mechanics; therefore, block ILU (BILU) type preconditioning 
has been applied. 

The plots of Fig. 26 show results obtained from computations using 
BILU preconditioning applied to the linearly elastic model problem shown 
in Fig. 24, using a single core of AMD Opteron 275 with PGI compiler. 

shaded elements: 
Young’s modulus E > ω, α

●: fill-ins of higher order and
extension of overlapping are
allowed on these nodes



UN
CO

RR
EC

TE
D 

PR
O

O
F

94      K. Nakajima 

The number of cubic elements is 32,768 (=323), where the total problem 
size is 107,811 DOF.  

BILU(0+,ω), in which additional selective fill-ins have been applied to 
BILU(0) for nodes connected to special elements (Young’s modulus is 
larger than ω), provides robust and efficient convergence. Although the 
number of non-zero components of the preconditioning matrices associ-
ated with methods BILU(0) and BILU(0+,200) is comparable, the latter is 
much more robust and efficient. BILU(1) provides better convergence 
than BILU(0+,ω), but it is more expensive. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 25  Boundary conditions of a model problem in linear elasticity considering 
simple cubic geometries with heterogeneity as shown in Fig. 24 
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(a) Computation time 

 

 

 

 

 

 

 

 

(b) Iterations for convergence 
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Fig. 26  Results for the problem in linear elasticity considering simple cube ge-
ometries of 107,811 DOF with heterogeneity as shown in Fig. 24 on a single core 
of AMD Opteron 275 using the PGI compiler  
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4.3  Effect of Selective Fill-Ins and Selective Overlapping 

The plots in Fig.27 display the dependence of the results for the heteroge-
neous test problem in linear elasticity shown in Fig. 24 on the depth of 
overlapping. All calculations were performed using 64 cores of AMD Op-
teron 275 cluster with PGI compiler and Pathscale MPI connected through 
an Infiniband network. The number of cube elements is 1,000,000 (=1003), 
where the total problem size has 3,090,903 DOF.  

Partitioning was applied in an RCB (Simon 1991), and the entire do-
main has been partitioned into 64 local data sets. Initial local numbering in 
Fig. 12 has been applied to each local data set. 

Generally speaking, the convergence rate is improved by the extension 
of overlapping, but the effect saturates if the depth of overlapping is 
greater than (d,α)=(1+,10). The effect of selective overlapping is particu-
larly noticeable for increases of the depth of overlapping from (d=0) to 
(d=1) or (d=1+), especially for BILU(1) and BILU(0+,ω), where ω is 
relatively small. 

Generally, amount of computations and communications increases, as 
the depth of overlapping is larger, but it also saturates if the depth of over-
lapping is greater than (d,α)=(1+,10), as shown in Fig. 28. 
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(a) Computation time          
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Fig. 27  The effect of overlapping on the results for the problem in linear elasticity 
considering simple cube geometries of 3,090,903 DOF with heterogeneity as 
shown in Fig. 24 on 64 cores of an AMD Opteron 275 cluster using the PGI 
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Fig. 28  The averaged elapsed time for each iteration for the problem in linear 
elasticity considering simple cube geometries of 3,090,903 DOF with heterogene-
ity as shown in Fig. 24 on 64 cores of an AMD Opteron 275 cluster using the PGI 
compiler 

4.4 Effect of Local Reordering 

For the same heterogeneous, linearly elastic test problem considered in the 
preceding section, the plots in Fig. 29 display the effect of the extension of 
the depth of overlapping for BILU(0+,10), which was the best performing 
method in Sect. 4.3, for various types of ordering/numbering schemes. 

Generally speaking, the convergence of global numbering and 
RCM-entire is much better than that of initial local numbering, while 
RCM-internal offers the poorest convergence in every case considered. 
Global numbering and RCM-entire offer comparable performance over 
most of the cases considered here, but global numbering is slightly better 
for larger depths of overlapping. 

Figure 30 displays the performance of schemes based on global num-
bering for a variety of preconditioners and depths of overlapping. 
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(a) Computation time          

 

 

 

 

 

 

 

(b) Iterations for convergence     

 

 

 

 

 

 

 

(c) Off-diagonal component # 

 

 

 

 

 

 

 

 

BILU(0+,10) applied to the problem in linear elasticity simple cube geometries of 
3,090,903 DOF with heterogeneity as shown in Fig. 24 on 64 cores of AMD Op-
teron 275 cluster using the PGI compiler 
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(a) Computation time          
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Fig. 30  The effect of overlapping on results for the problem in linear elasticity 
considering simple cube geometries of 3,090,903 DOF with heterogeneity as 
shown in Fig. 24 on 64 cores of an AMD Opteron 275 cluster using the PGI com-
piler, global numbering applied 
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4.5  Effect of HID 

In this section the robustness and efficiency of HID is compared with that 
of selective overlapping. The plots in Fig. 31 evaluate the performance of 
BILU(0), BILU(0+), BILU(1) for (d=0), (d=1) and (d=1+,α) overlapping 
using global numbering (Fig. 13) together with BILU(1), BILU(1+), 
BILU(2) applied with HID.  

The depth of overlapping for each local data set provided by HID cor-
responds to (d=0), and is thus in particular smaller than (d=1), as shown in 

 

 

 

 

 

 

 

Fig. 19. Figure 31c shows that cost of HID is competitive with that of (d=0).  
Figure 31a and b show that BILU(0)/BILU(0+)/BILU(1) with HID are 

faster and more robust than BILU(0)/BILU(0+)/BILU(1)-(d=1), and 
BILU(0)/BILU(0+)/BILU(1)-(d=1+,α) in most of the cases considered. 
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(a) Computation time          

 

 

 

 

 

 

 

(b) Iterations for convergence     
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Fig. 31  The effect of overlapping compared with HID on results for the problem 
in linear elasticity considering simple cube geometries of 3,090,903 DOF with 
heterogeneity as shown in Fig. 24 on 64 cores of an AMD Opteron 275 cluster 
using the PGI compiler, global numbering applied 

200

300

400

500

600

700

(0) (0+,200) (0+,50) (0+,10) (0+,5) (1)

(p), (p+,ω ): order of fill-in

IT
ER

A
TI

O
N

S

30

40

50

60

70

80

90

100

(0) (0+,200) (0+,50) (0+,10) (0+,5) (1)

(p), (p+,ω ): order of fill-in

se
c.

0.0E+00

2.0E+07

4.0E+07

6.0E+07

8.0E+07

(0) (0+,200) (0+,50) (0+,10) (0+,5) (1)

(p), (p+,ω ): order of fill-in

O
ff-

D
ia

g.
 C

om
po

ne
nt

 #

■ (d)=(0)
□ (d)=(1)
■ (d,α)=(1+,50)
■ HID



UN
CO

RR
EC

TE
D 

PR
O

O
F

Strategies for Preconditioning Methods      103 

5  Concluding Remarks 

In this work, the following four approaches have been proposed and intro-
duced as parallel preconditioning methods for ill-conditioned problems: 
 
• Selective fill-ins 
• Selective overlapping 
• Local reordering 
• HID 
 
These methods have been implemented to parallel iterative solvers for fi-
nite-element applications, and applied to two types of 3D linear elasticity 
problems with ill-conditioned coefficient matrices. The first problem in-
cludes contact conditions, while the other problem concerns a medium 
with heterogeneous material properties. 

Selective fill-ins and selective overlapping are very unique methods, be-
cause the dropping rules of the preconditioning matrices are defined ac-
cording to the properties of individual finite-elements and features of the 
finite-element applications before assembling entire coefficient matrices. 

Generally speaking, BILU(1+)-(1+) with selective fill-ins (p=1+) and 
selective overlapping (d=1+), provides the best performance with robust-
ness for contact problems, while BILU(0+,ω)-(1+,α) with selective fill-ins 
(p=0+) and selective overlapping (d=1+) offers the best performance for 
heterogeneous cases. The effect of selective overlapping is particularly 
marked for increases in the depth of overlapping from (d=0) or (d=1) to 
(d=1+). 

In this work, the effect of reordering of local nodes on convergence has 
also been evaluated. Although the optimum method was different for the 
two test problems considered here, both global numbering and local num-
bering with RCM-entire provide better convergence than the other methods 
considered. These two methods apply renumbering on both the internal 
and external nodes in each local data set. If a deeper overlapping of do-
mains is employed in the preconditioning processes, both the internal and 
external nodes should be reordered for better convergence. 

Furthermore, HID was compared with selective overlapping. Through 
reordering the unknowns according to their level numbers, the properties of 
HID ensure that the coefficient matrix [A] has a block structure. This block 
structure of the reordered matrix in turn leads to a natural parallelism in 
ILU/IC computations Thus, HID/PHIDAL-based ILU/IC preconditioners 
can consider the global effect of external domains in parallel computations. 
Although HID is as cheap in terms of computational costs as (d=0) 
overlapping, it is as robust as (d=1+) and (d=1+,α) even for ill-conditioned 
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The selection of optimum preconditioning methods with appropriate 
parameters for parallel computing is a difficult task, especially for 
ill-conditioned problems, the focus of this work. Usually, there are many 
parameters to be selected. For example we have order of fill-ins, depth of 
overlapping, threshold parameters for fill-ins and overlapping, and the 
method of local reordering in this work. First of all, further investigation of 
the effect of each parameter on convergence is required for various types 
of real applications. 

There have been some projects considering the automatic selection of 
preconditioners and parameters, such as the I-LIB (Intelligent Library) 
project.7 They are mainly focusing on the evaluation of the features of co-
efficient matrices derived from applications. In real applications, conver-
gence of parallel iterative solvers is often affected by local heterogeneity 
and/or discontinuity of the field, as shown in this paper. Our strategy is to 
utilize both the global information obtained from derived coefficient ma-
trices and also very local information, such as information obtained from 
each mesh in finite-element applications. 

The strategy of domain decomposition strongly affects the convergence 
of the method. In this work, it has been shown that optimum methods for 
reordering of local data differ according to the particular application, al-
though RCM-entire generally provides robust convergence. Furthermore, 
finite-element models for practical simulations contain various sizes and 
shapes of elements, although only uniform cubic elements were considered 
in this work.  

The first step towards an automatic selection of parameters in parallel 
preconditioning methods for ill-conditioned problems is the development 
of an intelligent domain decomposer (partitioner). According to our ex-
periences in this field, convergence declines if domain boundaries are on 
elements that provide strong connections, such as elements with higher 
values of Young’s modulus in heterogeneous cases, and truss elements in 
contact cases. The intelligent partitioner should also include some rules for 
the distortion of elements. 

If the HID approach is adopted, we do not have to consider the depth of 
overlapping, but the strategy for domain decomposition is of critical im-
portance, especially for complicated geometries. 

                                                      
7 http://www.super-computing.org/~kuroda/nadia.html 

problems, as shown in this work. Of the two schemes, HID and selective 
overlapping, it is difficult at this stage to definitively favor one over the 
other. Further investigation and comparison of these two methods should be 
undertaken over various types of real applications. 
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6 Appendix 1:  Parallel Iterative Solvers in GeoFEM 

6.1  Distributed Data Structure 

GeoFEM adopts domain decomposition for parallel computing where the 
entire model is divided into domains, and each domain is assigned to a 
processing element (PE). A proper definition of the layout of the distrib-
uted data structures is an important factor determining the efficiency of 
parallel computations with unstructured meshes. The local data structures 
in GeoFEM are node-based with overlapping elements, and as such are 
appropriate for the preconditioned iterative solvers used in GeoFEM. 

Although MPI provides subroutines for communication among proces-
sors during computation for structured grids, it is necessary for users to 
design both the local data structure and communications for unstructured 
grids. In GeoFEM, the entire region is partitioned in a node-based manner 
and each domain contains the following local data: 
 
• Nodes originally assigned to the domain 
• Elements that include the assigned nodes 
• All nodes that form elements but are from external domains 
• A communication table for sending and receiving data 
• Boundary conditions and material properties 
 
Nodes are classified into the following three categories from the viewpoint 
of message passing: 
   
• Internal nodes (originally assigned to the domain) 
• External nodes (forming the element in the domain but are from external 

domains) 
• Boundary nodes (external nodes of other domains) 
  

Communication tables between neighboring domains are also included 
in the local data. Values on boundary nodes in the domains are sent to the 
neighboring domains and are received as external nodes at the destination 
domain. This data structure, described in Fig. 32, and the communication 
procedure described in Fig. 33 provide excellent parallel efficiency. This 
type of communication occurs in the procedure for computing the ma-
trix-vector product of Krylov iterative solvers described in the next sub-
section. The partitioning program in GeoFEM works on a single PE, and 
divides the initial entire mesh into distributed local data. 

In GeoFEM, coefficient matrices for linear solvers are assembled in 
each domain according to FEM procedures. This process can be performed 
without communication among processors using the information of over-
lapping elements. 
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Fig. 32  Node-based partitioning into four PEs 
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Fig. 33  Communication among processors 
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6.2  Localized Preconditioning 

The incomplete lower-upper (ILU) and incomplete Cholesky (IC) factori-
zation methods are the most popular preconditioning techniques for accel-
erating the convergence of Krylov iterative methods.  

Of the range of ILU preconditioning methods, ILU(0), which does not 
allow fill-in beyond the original non-zero pattern, is the most commonly 
used. Backward/forward substitution (BFS) is repeated at each iteration. 
BFS requires global data dependency, and this type of operation is not 
suitable for parallel processing in which locality is of utmost importance. 
Most preconditioned iterative processes are a combination of the following 
four processes: 

 
• matrix-vector products 
• inner dot products 
• DAXPY (linear combination of vectors) operations and vector scaling 
• preconditioning operations 
 

The first three operations can be parallelized relatively easily. In gen-
eral, preconditioning operations such as BFS represent almost 50 % of the 
total computation if ILU(0) is implemented as the preconditioning method. 
Therefore, a high degree of parallelization is essential for the BFS opera-
tion. 

The localized ILU(0) used in GeoFEM is a pseudo ILU(0) precondi-
tioning method that is suitable for parallel processors. This method is not a 
global method, rather, it is a local method on each processor or domain. 
The ILU(0) operation is performed locally for a coefficient matrix assem-
bled on each processor by zeroing out components located outside the 
processor domain. This is equivalent to solving the problem within each 
processor with zero Dirichlet boundary conditions during the precondi-
tioning. This localized ILU(0) provides data locality on each processor and 
good parallelization because no inter-processor communications occur 
during ILU(0) operation. This idea is originally from the incomplete block 
Jacobi preconditioning method. 

However, localized ILU(0) is not as powerful as the global precondi-
tioning method. Generally, the convergence rate degrades as the number of 
processors and domains increases. At the critical end, if the number of 
processors is equal to the number of degrees of freedom (DOF), this 
method performs identically to diagonal scaling. 

Table 1 shows the results of a homogeneous solid mechanics example 
with 3 × 443 DOF solved by the conjugate gradient (CG) method with 
localized IC(0) preconditioning. Computations were performed on the 
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Hitachi SR2201, which was operated by the Information Technology Cen-
ter of the University of Tokyo.8 Although the number of iterations for con-
vergence increases according to the domain number, this increase is just 
30% from 1 to 32 PEs. 

Figure 34 shows the work ratio (real computation time/elapsed execu-
tion time including communication) for various problem sizes of simple 
3D elastic problems with homogeneous boundary conditions. In these 
computations, the problem size for 1 PE was fixed. The largest case was 
196,608,000 DOF on 1024 PEs. Figure 34 shows that the work ratio is 
higher than 95% if the problem size for 1 PE is sufficiently large. In this 
case, code was vectorized and a performance of 68.7 GFLOPS was 
achieved using 1024 PEs. Peak performance of the system was 300 
GFLOPS with 1024 PEs; 68.7 GFLOPS corresponds to 22.9% of the peak 
performance. This good parallel performance is attributed largely to the 
reduced overhead provided by the use of communication tables as part of 
the GeoFEM's local data structure. 

 
Table 1  Homogeneous solid mechanics example with 3×443 DOF on Hitachi 
SR2201 solved by CG method with localized IC(0) preconditioning (convergence 
criteria ε=10–8) 

 

 

 

 

 

 

 

                                                      
8 http://www.cc.u-tokyo.ac.jp 

PE # Iter. # Sec. Speed up 
1 204 233.7 – 
2 253 143.6 1.63      
4 259 74.3 3.15      
8 264 36.8 6.36      

16 262 17.4 13.52      
32 268 9.6 24.24      
64 274 6.6 35.68      
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Fig. 34  Parallel performance for various problem sizes for simple 3D elastic 
solid mechanics on Hitachi SR2201, problem size/PE is fixed, largest case is 
196,608,000 DOF on 1024 PEs 
 

7 Appendix 2:  Selective Blocking 

7.1  Robust Preconditioning Methods for Ill-Conditioned 
Problems 

The IC/ILU factorization methods are the most popular preconditioning 
techniques for accelerating the convergence of Krylov iterative methods. 
The typical remedies using an IC/ILU type of preconditioning method for 
ill-conditioned matrices, which appear in nonlinear simulations using pen-
alty constraints, are as follows: 
  
• Blocking 
• Deep Fill-in 
• Reordering. 
  
In addition to these methods, a special method called selective blocking 
was also developed for contact problems in Nakajima (2004). In the selec-
tive blocking method, strongly coupled finite-element nodes in the same 
contact group coupled through penalty constraints are placed into the same 
large block (selective block or super node) and all of the nodes involved 
are reordered according to this blocking information. Full LU factorization 
is applied to each selective block. The size of each block is (3 × NB) × 
(3 × NB) in 3D problems, where NB is the number of finite-element nodes 
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in the selective block, which is shown in Fig. 35. Thus, local equations for 
coupled finite-element nodes in contact groups are solved by means of a 
direct method during preconditioning. 

Table 2 shows the convergence of CG solver with various types of pre-
conditioning methods. The linear equations are derived from actual 
nonlinear contact problems in (Nakajima 2004). By introducing the 3 × 3 
block, the CG solver preconditioned by block IC with no fill-in (i.e., 
BIC(0)), converges even when λ is as large as 106. Deep fill-in options 
provide faster convergence, but the SB-BIC(0) (i.e., BIC(0) precondition-
ing with selective blocking reordering) shows the best performance. 
SB-BIC(0) usually requires a greater number of iterations for convergence 
compared to BIC(1) and BIC(2), but the overall performance is better be-
cause the computation time for each iteration and set-up is much shorter. 
As is also shown in Table 2, because no inter-block fill-in is considered for 
SB-BIC(0), the memory requirement for this method is usually as small as 
that in BIC(0) with no fill-in. Only the inter-node fill-in in each selective 
block is considered in SB-BIC(0). 

The CG solver with SB-BIC(0) preconditioning can be considered to be 
a hybrid of iterative and direct methods. Local equations for coupled fi-
nite-element nodes in contact groups are solved by means of a direct 
method during preconditioning. This method combines the efficiency and 
scalability of iterative methods with the robustness of direct methods. 

This idea of selective blocking is also related to the clustered ele-
ment-by-element method (CEBE) (Liou and Tezduyar 1992). In CEBE, 
elements are partitioned into clusters of elements, with the desired number 
of elements in each cluster, and the iterations are performed in a clus-
ter-by-cluster fashion. This method is highly suitable for both vectorization 
and parallelization, if it is used with proper clustering and element group-
ing schemes. Any number of elements can be brought together to form a 
cluster, and the number should be viewed as an optimization parameter to 
minimize computational cost. The CEBE method becomes equivalent to 
the direct method when the cluster size is equal to the total number of ele-
ments. Generally, larger clusters provide better convergence rates because 
a larger number of fill-in elements are taken into account during factoriza-
tion, but the cost per iteration cycle increases according to the size of the 
cluster, as shown in Fig. 36. The trade-off between convergence and com-
putational cost is not clear, but the results of examples by Liou and Tez-
duyar (1992) show that larger clusters provide better performance. 

In selective blocking, clusters are formed according to information about 
the contact groups. Usually, the size of each cluster is much smaller than 
that in a general CEBE method. If a finite element node does not belong to 
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any contact groups, it forms a cluster whose size is equal to one in the se-
lective blocking. 
 
Table 2  Iterations/computation time for convergence (ε=10–8) on a single PE of 
Intel Xeon 2.8 GHz by preconditioned CG for the 3D elastic fault-zone contact 
problem in (Nakajima 2004) (83,664 DOF), BIC(p): Block IC with p-th-order 
fill-ins, SB-BIC(0): BIC(0) with the selective blocking reordering 

 

   

  

  

  

  

  

  

  

             (a)                                  (b) 

Fig. 35  Procedure of the selective blocking, strongly coupled elements are put 
into the same selective block, (a) searching for strongly coupled components and 
(b) reordering and selective blocking 

 
 

Precondition-
ing method 

λ Itera-
tions 

Set-up 
(sec.) 

Solve 
(sec.) 

Set-up
+ 

solve 
(sec.) 

Single 
iter. 

(sec.) 

Required 
memory 

(MB) 

Diagonal 102 1,531 <0.01 75.1 75.1 0.049 
Scaling 106 N/A – – – – 

119 

IC(0) 102 401 0.02 39.2 39.2 0.098 
(Scalar Type) 106 N/A – – – – 

119 

102 388 0.02 37.4 37.4 0.097 
BIC(0) 

106 2,590 0.01 252.3 252.3 0.097 
59 

102 77 8.5 11.7 20.2 0.152 
BIC(1) 

106 78 8.5 11.8 20.3 0.152 
176 

102 59 16.9 13.9 30.8 0.236 
BIC(2) 

106 59 16.9 13.9 30.8 0.236 
319 

100 114 0.10 12.9 13.0 0.113 
SB-BIC(0) 

106 114 0.10 12.9 13.0 0.113 
67 
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Fig. 36  Trade-off between convergence and computational cost per on iteration 
cycle according to block size in CEBE type method, based on (Liou and Tezduyar 
1992) 
 
 

In (Nakajima 2003), the robustness of the preconditioning method was 
estimated according to the eigenvalue distribution of the [ ] [ ]AM 1−  matrix 
by the method in (Barrett et al. 1994), where [ ]A  is the original coefficient 
matrix and [ ] 1−M  is the inverse of the preconditioning matrix. According 
to the results, all of the eigenvalues are approximately constant and close 
to 1.00 for a wide range of λ values except for BIC(0). BIC(1) and BIC(2) 
provide a slightly better spectral feature than SB-BIC(0). 

7.2  Strategy for Parallel Computations 

Localized ILU/IC is an efficient parallel preconditioning method, but it is 
not robust for ill-conditioned problems. Table 3 (left side) shows the re-
sults by parallel CG solvers with localized preconditioning on 8 PEs of In-
tel Xeon 2.8 GHz cluster using distributed matrices, for the problem de-
scribed in Fig. 1. According to the results, the number of iterations for 
convergence increases by a factor of 10 in λ=106 cases. This is because the 
edge-cuts occur at inter-domain boundary edges that are included in con-
tact groups. 

In order to eliminate these edge-cuts, a partitioning technique has 
long to the same contact group 

Size of Block
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Convergence

Time for One Iteration
Cycle

Total Time for
Convergence ?

Size of Block
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m

e,
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Iterations for
Convergence

Time for One Iteration
Cycle

Total Time for
Convergence ?

been developed so that all nodes which be
are in the same domain. Moreover, nodes are re-distributed so that 
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load-balancing among domains should be attained for efficient parallel 
computing (Fig. 37). 

In GeoFEM, there are several types of special elements for contact 
problems (types 411, 412, 421, 422, 511, 512, 521 and 522). Nodes in-
cluded in the same elements of these types are connected through penalty 
constraints and form a contact group. In the new partitioning method, the 
partitioning process is executed so that these nodes in the same contact 
elements are on the same domain, or PE. These functions are added to the 
original domain partitioner in GeoFEM. 

Table 3 (right side) shows the results obtained by this partitioning 
method. The number of iterations for convergence has been dramatically 
reduced for each preconditioning method although it is larger than that of 
the single PE cases shown in Table 2 due to localization.  

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 37  Partitioning strategy for the nodes in contact groups 

 

 

 

 

 

 

 

 

ORIGINAL
partitioning

Nodes in contact pairs 
are on separated 
domains.

AFTER 
repartitioning

Nodes in contact pairs 
are on same domain 
but inter-domain load is 
not balanced.

AFTER
repartitioning & 
load-balancing

Nodes in contact pairs 
are on same domain 
and load is balanced.

ORIGINAL
partitioning

Nodes in contact pairs 
are on separated 
domains.

AFTER 
repartitioning

Nodes in contact pairs 
are on same domain 
but inter-domain load is 
not balanced.

AFTER
repartitioning & 
load-balancing

Nodes in contact pairs 
are on same domain 
and load is balanced.
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Table 3  Iterations/computation time for convergence (ε=10–8) on 8 PEs of Intel 
Xeon 2.8 GHz cluster by preconditioned CG for the 3D elastic fault-zone contact 
problem in (Nakajima 2004) (83,664 DOF), BIC(n): Block IC with n-level fill-in, 
SB-BIC(0): BIC(0) with the selective blocking reordering, effect of repartitioning 
method in Fig. 37 is evaluated 

7.3  Large-Scale Computations 

A large-scale computation was performed on the simple block model with 
784,000 elements and 823,813 nodes (Total DOF= 2,471,439) in Fig. 38. 

Linear elastic problem on the geometry was solved by parallel iterative 
solvers using various types of preconditioning methods with the MPC 
(multiple point constraint) conditions. Domains are partitioned according 
to the contact group information described in the previous section. Com-
putations were performed using 16–256 PEs on a Hitachi SR2201 at the 
University of Tokyo. 

Table 4 shows the results for various preconditioners. BIC(1), BIC(2) 
and SB-BIC(0) provide robust convergence but convergence of BIC(0) is 
very slow. SB-BIC(0) provides the most efficient performance, although 
the iteration number for convergence is larger than BIC(1) and BIC(2). 
Figure 39 and Table 4 show the parallel performance for the same problem 
solved using 16–256 PEs of Hitachi SR2201. BIC(1) and BIC(2) did not 
work if the PE number was small due to memory limitation. As shown in 
Table 4 and Fig. 39 the iteration number for convergence increases ac-
cording to PE number due to the locality of the preconditioning method, 
but this increase is very slight (only 14% increase from 16 PEs to 256 PEs 

 

  ORIGINAL 
partitioning 

IMPROVED 
partitioning 

Preconditioning 
method λ Itera-

tions 

Set-up 
+ 

solve 
(sec.) 

Itera-
tions 

Set-up 
+ 

solve 
(sec.) 

102 703   7.5      489    5.3       BIC(0) 106 4,825   50.6      3,477    37.5       
102 613   11.3      123    2.7       BIC(1) 106 2,701   47.7      123    2.7       
102 610   19.5      112    4.7       BIC(2) 106 2,448   73.9      112   4.7       
100 655   10.9      165    2.9       SB-BIC(0) 106 3,498   58.2      166    2.9       
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for SB-BIC(0)). The speed-up ratio based on elapsed execution time in-
cluding communication for 256 PEs, is 235 for SB-BIC(0), as extrapolated 
from the results obtained using 16 PEs.  

 

 

 

 

 

 

 

 

 

 
Fig. 38  Description of the simple block model 

 

Table 4  Iterations/elapsed execution time (including factorization, communica-
tion overhead) for convergence (ε=10–8) on a Hitachi SR2201 with 256 PEs using 
preconditioned CG for the 3D elastic contact problem for simple block model with 
MPC condition in Fig. 38 (2,471,439 DOF), domains are partitioned according to 
the contact group information, BIC(p): Block IC with p-th-order fill-ins, 
SB-BIC(0): BIC(0) with the selective blocking reordering 

 

   
16 

 
48 

PE# 
96 

 
144

 
192

 
256 

iterations 
sec. 

14,459
13,500

15,018
4,810

15,523
2,410

15,820
1,630

16,084
1,270

16,267 
1,230 BIC(0) 

speed-up 16 45 90 133 170 211 
iterations 

sec. 
 

N/A 
379
236

402
119

424
81

428
62

452 
48 BIC(1) 

speed-up  48 95 140 183 236 
iterations 

sec. 
 

N/A 
 

N/A 
364
212

387
140

398
112

419 
86 BIC(2) 

speed-up 96 145 182 217 
iterations 

sec. 
511
555

527
193

543
96

567
64

569
48

584 
38 SB-BIC(0) 

speed-up 16 46 92 139 185 235 

x

y

z

x

y

z

- MPC at inter-zone boundaries
- Symmetric conditions at x=0 & y=0 surfaces
- Dirichlet fixed boundary conditions at z=0 surface
- Uniform distributed load at z=Zmax surface
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Fig. 39  Parallel performance based on elapsed execution time including commu-
nication and iterations for convergence (ε=10–8) on a Hitachi SR2201 with 
16–256 PEs using preconditioned CG for the 3D elastic contact problem with 
MPC condition (λ=106) in Fig. 38 (2,471,439 DOF) 
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