# Introduction to Parallel Programming for Multicore/Manycore Clusters

#### **General Introduction** *Invitation to Supercomputing*

Kengo Nakajima Information Technology Center The University of Tokyo Takahiro Katagiri Information Technology Center Nagoya University

# Motivation for Parallel Computing (and this class)

- Large-scale parallel computer enables fast computing in large-scale scientific simulations with detailed models. Computational science develops new frontiers of science and engineering.
- Why parallel computing ?
  - faster & larger
  - "larger" is more important from the view point of "new frontiers of science & engineering", but "faster" is also important.
  - + more complicated
  - Ideal: Scalable
    - Solving N<sup>x</sup> scale problem using N<sup>x</sup> computational resources during same computation time (weak scaling)
    - Solving a fix-sized problem using N<sup>x</sup> computational resources in 1/N computation time (strong scaling)

# Scientific Computing = SMASH

#### **Science**

#### <u>Modeling</u>

## <u>Algorithm</u>

### <u>Software</u>

#### **Hardware**

- You have to learn many things.
- Collaboration (or Co-Design) will be important for future career of each of you, as a scientist and/or an engineer.
  - You have to communicate with people with different backgrounds.
  - It is more difficult than communicating with foreign scientists from same area.
- (Q): Computer Science, Computational Science, or Numerical Algorithms ?

- Supercomputers and Computational Science
- Overview of the Class

### **Computer & CPU**

5



- Central Processing Unit (中央処理装置): CPU
- CPU's used in PC and Supercomputers are based on same architecture
- GHz: Clock Rate
  - Frequency: Number of operations by CPU per second
    - GHz -> 10<sup>9</sup> operations/sec
  - Simultaneous 4-8 instructions per clock

# **Multicore CPU**



2 cores/CPU

Single Core 1 cores/CPU



Copyright 2011 FUJITSU LIMITED

- Core= Central part of CPU
- Multicore CPU's with 4-8 cores are popular

   Low Power
- GPU: Manycore

   O(10<sup>1</sup>)-O(10<sup>2</sup>) cores

4 cores/CPU

- More and more cores
   Parallel computing
- Oakleaf-FX at University of Tokyo: 16 cores
  - SPARC64<sup>™</sup> IXfx

# **GPU/Manycores**

- GPU: Graphic Processing Unit
  - GPGPU: General Purpose GPU
  - O(10<sup>2</sup>) cores
  - High Memory Bandwidth
  - Cheap
  - NO stand-alone operations
    - Host CPU needed
  - Programming: CUDA, OpenACC
- Intel Xeon/Phi: Manycore CPU
  - >60 cores
  - High Memory Bandwidth
  - Unix, Fortran, C compiler
  - Currently, host CPU needed
    - Stand-alone: Knights Landing





### **Parallel Supercomputers**

Multicore CPU's are connected through network



## Supercomputers with Heterogeneous/Hybrid Nodes



# **Performance of Supercomputers**

- Performance of CPU: Clock Rate
- FLOPS (Floating Point Operations per Second)
   Real Number
- Recent Multicore CPU
  - 4-8 FLOPS per Clock
  - (e.g.) Peak performance of a core with 3GHz
    - $3 \times 10^9 \times 4$ (or 8)=12(or 24) × 10<sup>9</sup> FLOPS=12(or 24)GFLOPS
    - 10<sup>6</sup> FLOPS= 1 Mega FLOPS = 1 MFLOPS
    - 10<sup>9</sup> FLOPS= 1 Giga FLOPS = 1 GFLOPS
    - 10<sup>12</sup> FLOPS= 1 Tera FLOPS = 1 TFLOPS
    - 10<sup>15</sup> FLOPS= 1 Peta FLOPS = 1 PFLOPS
    - 10<sup>18</sup> FLOPS= 1 Exa FLOPS = 1 EFLOPS

#### Peak Performance of Oakleaf-FX Fujitsu PRIMEHPC FX10 at U.Tokyo



Copyright 2011 FUJITSU LIMITED



- 1.848 GHz
- 8 FLOP operations per Clock
- Peak Performance (1 core)
  - 1.848 × 8= 14.78 GFLOPS
- Peak Performance (1 node/16 cores)
  - 236.5 GFLOPS
- Peak Performance of Entire
   Performance
  - 4,800 nodes, 76,800 cores
  - 1.13 PFLOPS

# **TOP 500 List**

http://www.top500.org/

- Ranking list of supercomputers in the world
- Performance (FLOPS rate) is measured by "Linpack" which solves large-scale linear equations.
  - Since 1993
  - Updated twice a year (International Conferences in June and November)
- Linpack
  - iPhone version is available

**Performance Development** 



- PFLOPS: Peta (=10<sup>15</sup>) Floating OPerations per Sec.
- Exa-FLOPS (=10<sup>18</sup>) will be attained after 2020

http://www.top500.org/

#### 48th TOP500 List (November, 2016)

|    | Site                                                              | Computer/Year Vendor                                                                                                | Cores      | R <sub>max</sub><br>(TFLOPS) | R <sub>peak</sub><br>(TFLOPS) | Power<br>(kW) |
|----|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------|------------------------------|-------------------------------|---------------|
| 1  | National Supercomputing<br>Center in Wuxi, China                  | <u>Sunway TaihuLight</u> , Sunway MPP,<br>Sunway SW26010 260C 1.45GHz, 2016<br>NRCPC                                | 10,649,600 | 93,015<br>(= 93.0 PF)        | 125,436                       | 15,371        |
| 2  | National Supercomputing<br>Center in Tianjin, China               | <u>Tianhe-2</u> , Intel Xeon E5-2692, TH<br>Express-2, Xeon Phi, 2013 NUDT                                          | 3,120,000  | 33,863<br>(= 33.9 PF)        | 54,902                        | 17,808        |
| 3  | Oak Ridge National<br>Laboratory, USA                             | <u>Titan</u><br>Cray XK7/NVIDIA K20x, 2012 Cray                                                                     | 560,640    | 17,590                       | 27,113                        | 8,209         |
| 4  | Lawrence Livermore National<br>Laboratory, USA                    | <u>Sequoia</u><br>BlueGene/Q, 2011 IBM                                                                              | 1,572,864  | 17,173                       | 20,133                        | 7,890         |
| 5  | DOE/SC/LBNL/NERSC<br>USA                                          | <u><b>Cori</b></u> , Cray XC40, Intel Xeon Phi 7250 68C<br>1.4GHz, Cray Aries, 2016 Cray                            | 632,400    | 14,015                       | 27,881                        | 3,939         |
| 6  | Joint Center for Advanced<br>High Performance Computing,<br>Japan | Oakforest-PACS, PRIMERGY CX600 M1,<br>Intel Xeon Phi Processor 7250 68C<br>1.4GHz, Intel Omni-Path,<br>2016 Fujitsu | 557,056    | 13,555                       | 24,914                        | 2,719         |
| 7  | RIKEN AICS, Japan                                                 | <u>K computer</u> , SPARC64 VIIIfx , 2011<br>Fujitsu                                                                | 705,024    | 10,510                       | 11,280                        | 12,660        |
| 8  | Swiss Natl. Supercomputer<br>Center, Switzerland                  | Piz Daint<br>Cray XC30/NVIDIA P100, 2013 Cray                                                                       | 206,720    | 9,779                        | 15,988                        | 1,312         |
| 9  | Argonne National Laboratory,<br>USA                               | <u>Mira</u><br>BlueGene/Q, 2012 IBM                                                                                 | 786,432    | 8,587                        | 10,066                        | 3,945         |
| 10 | DOE/NNSA/LANL/SNL, USA                                            | <u>Trinity</u> , Cray XC40, Xeon E5-2698v3 16C<br>2.3GHz, 2016 Cray                                                 | 301,056    | 8,101                        | 11,079                        | 4,233         |

R<sub>max</sub>: Performance of Linpack (TFLOPS)

R<sub>peak</sub>: Peak Performance (TFLOPS), Power: kW

http://www.top500.org/

#### 48<sup>th</sup> TOP500 List (November, 2016)

|     | Site                                                              | Computer/Year Vendor                                                                                                | Cores      | R <sub>max</sub><br>(TFLOPS) | R <sub>peak</sub><br>(TFLOPS) | Power<br>(kW) |
|-----|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------|------------------------------|-------------------------------|---------------|
| 1   | National Supercomputing<br>Center in Wuxi, China                  | <u>Sunway TaihuLight</u> , Sunway MPP,<br>Sunway SW26010 260C 1.45GHz, 2016<br>NRCPC                                | 10,649,600 | 93,015<br>(= 93.0 PF)        | 125,436                       | 15,371        |
| 2   | National Supercomputing<br>Center in Tianjin, China               | <u>Tianhe-2</u> , Intel Xeon E5-2692, TH<br>Express-2, Xeon Phi, 2013 NUDT                                          | 3,120,000  | 33,863<br>(= 33.9 PF)        | 54,902                        | 17,808        |
| 3   | Oak Ridge National<br>Laboratory, USA                             | <u>Titan</u><br>Cray XK7/NVIDIA K20x, 2012 Cray                                                                     | 560,640    | 17,590                       | 27,113                        | 8,209         |
| 4   | Lawrence Livermore National Laboratory, USA                       | <u>Sequoia</u><br>BlueGene/Q, 2011 IBM                                                                              | 1,572,864  | 17,173                       | 20,133                        | 7,890         |
| 5   | DOE/SC/LBNL/NERSC<br>USA                                          | <u><b>Cori</b></u> , Cray XC40, Intel Xeon Phi 7250 68C<br>1.4GHz, Cray Aries, 2016 Cray                            | 632,400    | 14,015                       | 27,881                        | 3,939         |
| 6   | Joint Center for Advanced<br>High Performance Computing,<br>Japan | Oakforest-PACS, PRIMERGY CX600 M1,<br>Intel Xeon Phi Processor 7250 68C<br>1.4GHz, Intel Omni-Path,<br>2016 Fujitsu | 557,056    | 13,555                       | 24,914                        | 2,719         |
| 7   | RIKEN AICS, Japan                                                 | <u>K computer</u> , SPARC64 VIIIfx , 2011<br>Fujitsu                                                                | 705,024    | 10,510                       | 11,280                        | 12,660        |
| 8   | Swiss Natl. Supercomputer<br>Center, Switzerland                  | Piz Daint<br>Cray XC30/NVIDIA P100, 2013 Cray                                                                       | 206,720    | 9,779                        | 15,988                        | 1,312         |
| 9   | Argonne National Laboratory,<br>USA                               | <u>Mira</u><br>BlueGene/Q, 2012 IBM                                                                                 | 786,432    | 8,587                        | 10,066                        | 3,945         |
| 10  | DOE/NNSA/LANL/SNL, USA                                            | <u><b>Trinity</b></u> , Cray XC40, Xeon E5-2698v3 16C<br>2.3GHz, 2016 Cray                                          | 301,056    | 8,101                        | 11,079                        | 4,233         |
| 104 | ITC/U. Tokyo<br>Japan                                             | Oakleaf-FX<br>SPARC64 IXfx, 2012 Fujitsu                                                                            | 76800      | 1043                         | 1135                          | 1177          |

- Theoretical & Experimental Science
- Computational Science
  - The 3<sup>rd</sup> Pillar of Science
  - Simulations using Supercomputers



# **Methods for Scientific Computing**

- Numerical solutions of PDE (Partial Diff. Equations)
- Grids, Meshes, Particles
  - Large-Scale Linear Equations
  - Finer meshes provide more accurate solutions





境界要素法 Boundary Element Method BEM



個別要素法 Discrete Element Method DEM

# 3D Simulations for Earthquake Generation Cycle San Andreas Faults, CA, USA

Stress Accumulation at Transcurrent Plate Boundaries



Adaptive FEM: High-resolution needed at meshes with large deformation (large accumulation)



## Typhoon Simulations by FDM Effect of Resolution









20

[JAMSTEC]

# Simulation of Typhoon MANGKHUT in 2003 using the Earth Simulator



[JAMSTEC]



ppOpen-HPC

- ppOpen-HPC is an open source infrastructure for development and execution of optimized and reliable simulation code on post-peta-scale (pp) parallel computers based on many-core architectures with automatic tuning (AT), and it consists of various types of libraries, which cover general procedures for scientific computation.
- Software
  - Source Files, English Documents
  - MIT License
  - <u>http://ppopenhpc.cc.u-tokyo.ac.jp/</u>





# ppOpen-MATH

- A set of common numerical libraries
  - Multigrid solvers (ppOpen-MATH/MG)
  - Parallel graph libraries (ppOpen-MATH/GRAPH)
    - Multithreaded RCM for reordering (under development)
  - Parallel visualization (ppOpen-MATH/VIS)
  - Library for coupled multi-physics simulations (loosecoupling) (ppOpen-MATH/MP)
    - Originally developed as a coupler for NICAM (atmosphere, unstructured), and COCO (ocean, structured) in global climate simulations using K computer
      - Both codes are major codes on the K computer.
        - » Prof. Masaki Satoh (AORI/U.Tokyo): NICAM
        - » Prof. Hiroyasu Hasumi (AORI/U.Tokyo): COCO
    - Developed coupler is extended to more general use.
      - Coupled seismic simulations

# Motivation for Parallel Computing (again)

- Large-scale parallel computer enables fast computing in large-scale scientific simulations with detailed models. Computational science develops new frontiers of science and engineering.
- Why parallel computing ?
  - faster & larger
  - "larger" is more important from the view point of "new frontiers of science & engineering", but "faster" is also important.
  - + more complicated
    - Coupled Problems (Fluid + Structure)
    - Multiple PDE (Partial Differential Equations)
    - Actually, most of the real world problems are "coupled" ones



#### Sea surface temperature (OSST)



left: COCO (Ocean: Structured), right: NICAM (Atmospheric: Semi-Unst.)

#### Thickness of Sea Ice (OHI)



left: COCO (Ocean: Structured), right: NICAM (Atmospheric: Semi-Unst.)

# **Dataflow of ppOpen-MATH/MP\***



#### Atmosphere-Ocean Coupling on OFP by NICAM/COCO/ppOpen-MATH/MP

- High-resolution global atmosphere-ocean coupled simulation by NICAM and COCO (Ocean Simulation) through ppOpen-MATH/MP on the K computer is achieved.
  - ppOpen-MATH/MP is a coupling software for the models employing various discretization method.
- An O(km)-mesh NICAM-COCO coupled simulation is planned on the Oakforest-PACS system.
  - A big challenge for optimization of the codes on new Intel Xeon Phi processor
  - New insights for understanding of global climate dynamics







#### [C/O M. Satoh (AORI/UTokyo)@SC16]

# Coupling Simulation of Seismic Waves and Building Vibrations



The coupling simulation refers to one-way data communication from FDM (seismic wave propagation) to FEM (dynamic structure).

# **Numerical Model Description**

#### Seism3D+ (composed of ppOpen-APPL/FDM)

Explicit FDM Application for Seismic Wave Analysis

$$\rho \frac{\partial v_p}{\partial t} = \left( \frac{\partial \sigma_{xp}}{\partial x} + \frac{\partial \sigma_{yp}}{\partial y} + \frac{\partial \sigma_{zp}}{\partial z} + f_p \right), \quad (p = x, y, z)$$

$$\frac{\partial \sigma_{pq}}{\partial t} = \lambda \left( \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} \right) \delta_{pq} + \mu \left( \frac{\partial v_p}{\partial q} + \frac{\partial v_q}{\partial p} \right), \quad (p, q = x, y, z)$$

w: velocity  

$$σ$$
: stress  
f: external force  
 $λ$ ,  $μ$ : Lame's constant



#### FrontISTR++ (composed of ppOpen-APPL/FEM)

Implicit FEM Application for Structural Analysis

 $\mathbf{M}\ddot{\mathbf{d}} + \mathbf{C}\dot{\mathbf{d}} + \mathbf{K}\mathbf{d} = \mathbf{F}$ 

M: mass matrix C: damping matrix K: stiffness matrix

F: nodal load vector d: nodal displacement vector



Computational load: Seism3D+ < FrontISTR++

### Implementation of the Coupling Simulation





Unstructured mesh used in FrontISTR++ Colors: MPI process (64 processes) (Partitioning by METIS)

# **Practical Simulation on Oakleaf-FX**

The simulation target is the earthquake that occurred at Awaji Island on 13 April, 2013. The computational domain of Seism3D+ is 60 km<sup>2</sup> from Awaji Island and that of FrontISTR++ is the actual building of RIKEN Advanced Institute for Computational Science (AICS), Port Island, Kobe, modeled by an unstructured mesh.

Seism3D+Grid Points(x, y, z) = (1536, 1536, 1600)Parallelization2560 processes/16 threads

FrontISTR++Grid Points<br/>Parallelization600 million (AICS building)<br/>1000 processes/16 threads<br/>(@Port Island)<br/>1000 processes/16 threads<br/>(@Kobe Stadium)

<u>Total 4560 nodes on Oakleaf-FX</u> (Seism3D+: 2560 nodes, FrontISTR++: 2000 nodes)



Computational domain of Seism3D+

## 2,560 nodes for FDM, 2,000 nodes for FEM = 4,560 nodes of FX10



Seismic wave propagation by Seism3D+ (Red:P-wave, Green:S-wave)

Building vibration by FrontISTR++

# 2,560 nodes for FDM, 2,000 nodes for FEM = 4,560 nodes of FX10

- Coupling simulation was executed on large-scale computational resources of Oakleaf-FX supercomputer system.
- ✓ Seismic wave propagations (Seism3D+) for the simulation time of 90 sec., and building vibrations (FrontISTR++) for the simulation time of 20 sec. were calculated.

Comparison between sim. time and exe. time

|             | Sim. Time | Exe. Time |
|-------------|-----------|-----------|
| Seism3D+    | 90 sec.   | 6 hours   |
| FrontISTR++ | 20 sec.   | 16 hours  |

✓ It was revealed that the manner in which memory allocation occurs in the coupler has some problem when such a large-scale simulation is performed.



[Dr. Hajime Yamamoto, Taisei]

図-5 圧力上昇量の平面分布(初期状態からの増分、圧入開始から100年後

# Simulation of Geologic CO<sub>2</sub> Storage

- International/Interdisciplinary Collaborations
  - Taisei (Science, Modeling)
  - Lawrence Berkeley National Laboratory, USA (Modeling)
  - Information Technology Center, the University of Tokyo (Algorithm, Software)
  - JAMSTEC (Earth Simulator Center) (Software, Hardware)
  - NEC (Software, Hardware)
- 2010 Japan Geotechnical Society (JGS) Award



<u>Software</u>

<u>H</u>ardware

## Simulation of Geologic CO<sub>2</sub> Storage

- Science
  - Behavior of CO<sub>2</sub> in supercritical state at deep reservoir
- PDE's
  - 3D Multiphase Flow (Liquid/Gas) + 3D Mass Transfer
- Method for Computation
  - TOUGH2 code based on FVM, and developed by Lawrence Berkeley National Laboratory, USA
    - More than 90% of computation time is spent for solving large-scale linear equations with more than 10<sup>7</sup> unknowns
- Numerical Algorithm
  - Fast algorithm for large-scale linear equations developed by Information Technology Center, the University of Tokyo
- Supercomputer
  - Earth Simulator II (NEX SX9, JAMSTEC, 130 TFLOPS)
  - Oakleaf-FX (Fujitsu PRIMEHP FX10, U.Tokyo, 1.13 PFLOPS



#### **Diffusion-Dissolution-Convection Process**



- Buoyant scCO<sub>2</sub> overrides onto groundwater
- Dissolution of CO<sub>2</sub> increases water density
- Denser fluid laid on lighter fluid
- Rayleigh-Taylor instability invokes convective mixing of groundwater

The mixing significantly enhances the CO<sub>2</sub> dissolution into groundwater, resulting in more stable storage

Preliminary 2D simulation (Yamamoto et al., GHGT11) [Dr. Hajime Yamamoto, Taisei]





Density convections for 1,000 years:

#### **Flow Model**

Only the far side of the vertical cross section passing through the injection well is depicted.

[Dr. Hajime Yamamoto, Taisei]

- The meter-scale fingers gradually developed to larger ones in the field-scale model
- Huge number of time steps (> 10<sup>5</sup>) were required to complete the 1,000-yrs simulation
- Onset time (10-20 yrs) is comparable to theoretical (linear stability analysis, 15.5yrs)

#### Simulation of Geologic CO<sub>2</sub> Storage



42

# 3D Ground Water Flow Simulation with up to 4,096 nodes on Fujitsu FX10 (GMG-CG)

up to 17,179,869,184 meshes (64<sup>3</sup> meshes/core)



# Motivation for Parallel Computing again

- Large-scale parallel computer enables fast computing in large-scale scientific simulations with detailed models. Computational science develops new frontiers of science and engineering.
- Why parallel computing ?
  - faster & larger
  - "larger" is more important from the view point of "new frontiers of science & engineering", but "faster" is also important.
  - + more complicated
  - Ideal: Scalable
    - Solving N<sup>x</sup> scale problem using N<sup>x</sup> computational resources during same computation time (weak scaling)
    - Solving a fix-sized problem using N<sup>x</sup> computational resources in 1/N computation time (strong scaling)

- Supercomputers and Computational Science
- Overview of the Class

# Goal of SC4SC 2017

- If you want to do something on supercomputers, you have to learn "parallel programming" !!
- Introduction to MPI & OpenMP
  - MPI: Message Passing Interface
    - "grab" the idea of SPMD (Single-Program Multiple-Data)
  - OpenMP: Multithreading
- Parallel Application
  - Finite-Volume Method (FVM): We start at this part
  - Data Structure for Parallel Computing
  - Parallel FVM by OpenMP
  - Parallel FVM by OpenMP/MPI Hybrid

## **Initial Structure of this Short Course**



## **New Structure of this Short Course**

|               | Part-II-1 (Nakajima):                  |
|---------------|----------------------------------------|
| Feb. 21 (T)   | Introduction to FVM                    |
|               |                                        |
|               |                                        |
| Feb 22 (W)    | Part-I (Katagiri):                     |
|               | Introduction to OpenMP & MPI           |
|               |                                        |
| Eab 22 (Th)   |                                        |
| red. 23 (111) |                                        |
|               | Part-II-2 (Nakajima):<br>Parallel FVM  |
|               | FX10 Supercomputer is not available on |
| Feb. 24 (F)   | Feb.24                                 |
|               |                                        |

#### PE: Processing Element Processor, Domain, Process

SPMD

You understand 90% MPI, if you understand this figure.



Each process does same operation for different data

Large-scale data is decomposed, and each part is computed by each process It is ideal that parallel program is not different from serial one except communication.

# **Our Current Target: Multicore Cluster**

Multicore CPU's are connected through network



- OpenMP
  - ✓ Multithreading
  - ✓ Intra Node (Intra CPU)
  - ✓ Shared Memory

• MPI

- ✓ Message Passing
- ✓ Inter Node (Inter CPU)
- ✓ Distributed Memory

# **Our Current Target: Multicore Cluster**

Multicore CPU's are connected through network



- OpenMP
  - Multithreading
  - ✓ Intra Node (Intra CPU)
  - ✓ Shared Memory

- MPI
  - ✓ Message Passing
  - ✓ Inter Node (Inter CPU)
  - Distributed Memory

# Flat MPI vs. Hybrid

#### Flat-MPI: Each Core -> Independent



#### **Hybrid: Hierarchal Structure**

 OpenMP core core core memory MPI memory memol core core core core core core core core core

### **Example of OpnMP/MPI Hybrid** Sending Messages to Neighboring Processes

#### MPI: Message Passing, OpenMP: Threading with Directives

```
1C
!C- SEND
     do neib= 1, NEIBPETOT
       II= (LEVEL-1) *NEIBPETOT
        istart= STACK_EXPORT(II+neib-1)
        inum = STACK_EXPORT(II+neib) - istart
!$omp parallel do
       do k= istart+1, istart+inum
         WS(k-NEO) = X(NOD EXPORT(k))
       enddo
        call MPI_Isend (WS(istart+1-NEO), inum, MPI_DOUBLE_PRECISION,
                                                                           &
    &
                        NEIBPE (neib), 0, MPI_COMM_WORLD,
                                                                           &
     &
                        req1(neib), ierr)
     enddo
```

## Prerequisites

- Experiences in Unix/Linux
- Experiences of programming (Fortran or C/C++)
- Fundamental numerical algorithms (Gaussian Elimination, LU Factorization, Jacobi/Gauss-Seidel/SOR Iterative Solvers)
- Experiences in SSH Public Key Authentication Method

## Preparation

- Windows
  - Cygwin: Please install gcc (C) or gfortran (Fortran) and SSH !!
  - ParaView
- MacOS, UNIX/Linux
  - ParaView
- Cygwin: <u>https://www.cygwin.com/</u>
- ParaView: <u>http://www.paraview.org/</u>