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FEM-intro

FDM and FEM

 Numerical Method for solving PDE’s

— Space Is discretized into small pieces (elements, meshes)
« PDE: Partial Differential Equation(s) g7 A2

* Finite Difference Method (FDM) (BE) Z49%

— Differential derivatives are directly approximated using
Taylor Series Expansion.
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Finite Difference Method (FDM)
Taylor Series Expansion
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Finite Difference Method (FDM)
(BIR) E=57i%  BFRWMS

macroscopic differentiation
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2"d Order Differentiation in FDM
Taylor Series Expansion

* Approximate Derivative at X (center of 1 and i+1)

O, @, 1412 ®: i1 (%0) :¢l+1‘¢f
. ‘ " . dx i+1/2 AX

Ax Ax
Ax—0: Real Derivative

e 2nd-Order Differentiation at |

d d
2 B [ R (C”j _(ﬂ
C —)——@ (ﬂ”j ~ AX )i \OX)iiys

Ax Ax dx’ i AX
B~ @ _P—@,
_ X AX  _Pa—20+¢,
AX AXC




FEM-intro

1D Heat Conduction

o 2nd_Qrder Central Difference
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« Linear Equation at Each Grid Point
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FEM-intro

FDM and FEM

 Numerical Method for solving PDE’s
— Space Is discretized into small pieces (elements, meshes)
« PDE: Partial Differential Equation(s) g7 A2
 Finite Difference Method (FDM) (BE) Z4i%

— Differential derivatives are directly approximated using
Taylor Series Expansion.

e Finite Element Method (FEM) BREEZ %

— Solving “weak form” derived from integral equations.
* “Weak solutions” are obtained.

— Method of Weighted Residual (MWR), Variational Method

— Suitable for Complicated Geometries
« Although FDM can handle complicated geometries ...
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FDM can handle complicated

geometries: BFC
Handbook of Grid Generation

Computational Domain il i
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FIGURE3.1 Transformation between computational and physical domains.
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FIGURE 3.2 Grids in computational and physical domains.



History of FEM

* |In 1950’s, FEM was originally developed as a method
for structure analysis of wings of airplanes under
collaboration between Boeing and University of
Washington (M.J. Turner, H.C. Martin etc.).

— “Beam Theory” Straight Wing: Subsonic
Beam Theory for Calc. of Load
cannot be at the Base of V\ﬁng_s
applied to A ———=L
sweptback wings
for airplanes with

jet engines.

Boeing 747-100

~ Swept Wing: Transonic-Supersonic
Beam Theory cannot be applied



History of FEM

 Extended to Various Applications
— Non-Linear: T.J.Oden
— Non-Structure Mechanics: O.C.Zienkiewicz

« Commercial Package

— NASTRAN

« Originally developed by NASA
 Commercial Version by MSC
« PC version is widely used in industries

10
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Recent Research Topics

Non-Linear Problems
— Crash, Contact, Non-Linear Material
— Discontinuous Approach
« X-FEM
Parallel Computing
— also in commercial codes

Adaptive Mesh Refinement (AMR)

— Shock Wave, Separation

— Stress Concentration

— Dynamic Load Balancing (DLB) at Parallel Computing
Mesh Generation

— Large-Scale Parallel Mesh Generation

11
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3D Simulations for Earthquake
Generation Cycle
San Andreas Faults, CA, USA

Stress Accumulation at Transcurrent Plate Boundaries
Adaptive Mesh Refinement (AMR)
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High -resolution needed at

Adaptive FEM

(large

10N

)

accumulation

meshes with large deformat




 Numerical Method for PDE (Method of Weighted
Residual)

e Gauss-Green’s Theorem

 Numerical Method for PDE (Variational Method)
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Approximation Method for PDE
Partial Differential Equations: {R{ % A2

« Consider solving the following differential
equation (boundary value problem), domain V,
boundary S:

L(u) = f

U (solution of the equation) can be approximated
by function u,, (linear combination)

M
u, = Z ay Y. Trial/Test Function (54TRI%4) (known
- function of position, defined in domain and
B at boundary. “Basis” in linear algebra.

d,  Coefficients (unknown)
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Method of Weighted Residual
MWR: EA TS REX
* u,, is exact solution of u if R (residual : 5%2)= 0:
R=L(u, )~ f
* In MWR, consider the condition where the following

integration of R multiplied by w (weight/weighting
function : E#AEH%%) over entire domain is 0

jWR(uM)dV:O

« MWR provides “smoothed” approximate solution,
which satisfies R=0 in the domain V



FEM-intro 17

Method of Weighted Residual
MWR: E&AfT S ZREE

* u,, is exact solution of u if R (residual : 5%2)= 0:
A

R

R=L(u,)- f
M h\/f\\_/’

* In MWR, consider the condition where the following
integration of R multiplied by w (weight/weighting
function : E#AEH%%) over entire domain is 0

jWR(uM)dV:O

« MWR provides “smoothed” approximate solution,
which satisfies R=0 in the domain V
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Variational Method (Ritz) (1/2)
%53 i

 Itis widely known that exact solution u provides
extreme values (max/min) of “functional : JLEIZL” 1(u)

— Euler equation: differential equation satisfied by u, if
functional has extreme values (#B{&)

— Euler equation is satisfied, if u provides extreme values of
1(u).

— provide extreme values : {28 =& % (or stationarize)
 For example, functional, which corresponds to

governing equations of linear elasticity (principle of

virtual work, equilibrium equations), is “principle of

minimum potential energy (principle of minimum strain

energy) (IRJILF—&g&/ND, EAIRILFTF—F/D) ".

I\l




FEM-intro

Variational Method (Ritz) (2/2)
%53 i
o Substitute the following approx. solution into I(u),

and calculate coefficients a under the condition

where I,,=I(u,,) provides extreme values, then u,,
IS obtained:

M
Uy = ZaiLPi
=)

« Variational method is theoretical method, and
can be only applied to differential equations,
which has equivalent variational problem.

— In this class, we mainly use MWR

— Brief overview of Ritz method will be given later in this
material.

19
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Finite Element Method (FEM)
BRERE

Entire region is discretized into fine
elements (£3) , and the following
approximation is applied to each
element:

:ZaiLIJi
=)

MWR or Variational Method is applied to each
element

Each element matrix is accumulated to global
matrix, and solution of obtained linear equations
provides approx. solution of PDE.

%ﬁ.’?’

o jﬁ%@gﬁh

Details of FEM will be provided in the next material.

20
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Example of MWR (1/3)

 Thermal Equation

2 2
/ 6T2+6T2 +Q=0 InV
ox~ oy

A:Conductivity, Q:Heat Gen./Volume

T =0 at boundary S

* Approximate Solution
T=) aW,
j=1
 Residual
I R R
R(a,x,y) = AZa[ + 2’]+Q

oy

21
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Example of MWR (2/3)

* Multiply weighting function w;, and apply integration
over V.

jvvi RdV =0

 If a set of weighting function w; Is a set of n
different functions, the above integration provides
a set of n linear equations:

o # trial/test functions = # weighting functions

ijan)w dv = ijdv (i=1..n)
x> oy’

1—1
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Example of MWR (3/3)

o Matrix form of the equations is described

as follows:
B} ={Q}
B.:ij azwj+azwj dv Q.:—ijdv
Py L axe ay? T

Actual approach is slightly different from this
(more detalled discussions in the next material)

23
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Various types of MWR'’s

« Various types of weighting functions

e Collocation Method
« Least Square Method
e Galerkin Method

Y
BERE
HS—% sk

24
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Collocation Method

e Weighting function: Dirac’s Delta Function o

d(z)=w if z=0 i
5(z)=0 it z#0, [ d(z)dz=1
W = 5(X =X, ) X:location jTj

* |n collocation method, R (residual) is setto O at n
collocation points by feature of Dirac’s Delta Fn. o:

= oo at X =X,

|RA(x-x)av =R],, 5§X—xi
v | =0atXx # X,

O(X—X,

* If nincreases, R approaches to O over entire
domain.

25
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Least Square Method

* Weighting function:
oR
W =——
0a
* Minimize the following integration according to a
(unknowns):

I(a) = j [R@a, )] dv

—[l @)= ZI{R(a X)

'

I{R(a X) aR(Z X)} dv =0

OR(3,,X)
0a

}dV:O

26
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Galerkin Method

 Weighting Function = Test/Trial Function:

w =Y
« Galerkin, Boris Grigorievich

— 1871-1945

— Engineer and Mathematician of Russia

— He got a hint for Galerkin Method while
he was imprisoned because of anti-
czarism (1906-1907).

27
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Example (1/2)

e Governing Equation

2

-9;+u+x:0 (0= x<)
dx

 Boundary Conditions: Dirichlet
u=0@x=0
u=0@x=1

 Exact Solution
u:sinx_

sinl

28
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_ SN X
Exact Solution U=— X
sinl

0.08

0.06 F
> 004 f

0.02 f
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Example (2/2)

« Assume the following approx. solution:

u=x1-x)(a +a,x)=x(1-x)a, +x’(1-x)a, =a,¥, +a,¥,
W =x1-x), WY,=x’(1-X)

Test/trial function satisfies u=0@x=0,1

e Residual is as follows:

R(a,,a,,X) = X+ (-2+x—x)a, +(2-6x+x° —x%)a,

o Let's apply various types of MWR to this equation

— We have two unknowns (a,, a,), therefore we need two
iIndependent weighting functions.

30
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Collocation Method
e Nn=2, x=1/4, x=1/2 for collocation points:

1 1
R(al’aZ’Z) =0, R(al’aZ’E) =0

R(a,,a,,X) = X+ (-2+x—Xx)a, +(2-6x+Xx* - x")a,

e Solution:
29/16 -35/64](a,| [1/4 6
{7/4 718 Haz}_{l/Z} ) TR
=227 451 a0

217

31
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Least Square Method

« Weighting functions, Residual:

leﬁ:—2+x—x2, w2:£:2—6x+x2—x3
ot 0a,
R(a,,a,,X) = X+ (-2+x—Xx%)a, +(2-6x+x* - x")a,

e Solution:
fR( x)a—Rdx—fR( X) (=24 X~ x2) dx=0
(@, 2 %) 5 = | R(a, 2, =

fR( x)a—Rdx—fR( X) (2= 6x+x2 —x%) dx = 0
REC T oa, = do A, 8, =
202 10110(a,] [55 _ 46161 _ _ 41713
{707 1572}{%}_{399} ) %" 246137 7 246137

u=X2"%) 46161 41713)
246137
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Galerkin Method

« Weighting functions, Residual:
w, =W =x(1-x), w,=W, =x’(1-X)

R(a,,a,,X) = X+ (-2+Xx—-x%)a, +(2-6x+Xx* - x%)a,
e Results:

"R(a,.a,, ) ¥, dx= [ R@,a,, %) (x-x?) dx=0
JO JO

.1R(a1,a2,x) W, dx= .1R(ai,a2,x) (x*=x°)dx=0
J0 J0

3/10 3/20 |(a] [1/12 P o - 71
{3/20 13/105}{%}_{1/20} %~ 369

u="47% 714 635
369

v
41

33
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34

Results

] Collocation | Collocation Least- ]

0.25 0.04401 0.04493 0.04462 0.04311 0.04408
0.50 0.06975 0.07143 0.07031 0.06807 0.06944
0.75 0.06006 0.06221 0.06084 0.05900 0.06009

Galerkin Method provides the most accurate solution

— If functional exists, solutions of variational method and
Galerkin method agree.

A kind of analytical solution (later of this material)
Many commercial FEM codes use Galerkin method.

In this class, Galerkin method Is used.

Least-square may provide robust solution in Navier-
Stokes solvers for high Re.
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Homework (1/2)

* Apply the following two method is the next page to
the same equations:
— Method of Moment
— Sub-Domain Method
— Results at x=0.25, 0.50, 0.75

 Compare the results of “collocation method” on
“non-collocaion points” with exact solution
— Explain the behavior
— Try different collocation points

35
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Homework (2/2)
e Method of Moment (E—X* > k%)

w=x" (i=1)

— Weighting functions ?

e Sub-Domain Method (&% $E1E;:%)
— Domain Vs divided into sub-domains V,
(i=1-n), and weighting functions w; are
given as follows:
1 for points inV,
{() for points out oV,

W1 1

I
:
|
1

W =

— Two unknowns, two sub
domains

— Two sub-domains do not share
any overlaps




 Numerical Method for PDE (Method of Weighted
Residual)

e Gauss-Green’s Theorem

 Numerical Method for PDE (Variational Method)
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Gauss’s Theorem

ou oV JW
j( LV,

o oy o ) dv = i (Un, +Vn, +Wn,)dS

V

3D (x,y,2

DomainV surrounded by smooth close
surfaceS

3 continuous functions defined Yh:

- U(x,y,2) V(xy,z) W(xy,z)

Outward normal vectan on surfaces

- n,, n, n;direction cosine

e
£

V

-

\QS

\ 4

38
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Green’s Theorem (1/2)

e Assume the following functions:

U= Aa—B, V = Aa—B, W = Aa—B
0X oy 0z
e Thus:

ouU oV oW _(0°B 0°B 0°B) (0AdB 0AOB 0AOB
+ 0+ = + + + + +
ox 0y 0z ox> ody> 0z X Ox 9y oy 0z 0z

 Apply Gauss’s theorem:
,[ 0° B 6 B 6 B dV+_[ 6A6B+6A6B+0A6B qv
OX 0X 0y 0y 0z 0z

jUn +Vny+WnZ dS= IA{ n + aB n, + aB ]dS
S

az




FEM-intro

Green’s Theorem (2/2)

e (cont.)
J‘ n B_an dS:j aBax+aBay+aBaz 4s
0z .\ 0xon dyon 0zodn
0B _ L
=| A— dS % Gradient of B to the direction of normal vector
. Finally:

40

jA{a B 0° : L0 B)dv IA dS_J‘(OAaB_I_OAaB_I_BAaBjdV

2\ 0x 0Xx 0y dy 0z 0z

e Appears often after next class
— From 24 order differentiation tostorder differentiation.
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In Vector Form

e Gauss’'s Theorem

jmwvdv:ijnds
V S

e Green’s Theorem

IvAu dv = j(vDu)Tn dS—j(DTv)(Du) dv

Vv

41



 Numerical Method for PDE (Method of Weighted
Residual)

e Gauss-Green’s Theorem

 Numerical Method for PDE (Variational Method)
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Variational Method (Ritz) (1/2)
%53 i

 Itis widely known that exact solution u provides
extreme values (max/min) of “functional : JLEIZL” 1(u)

— Euler equation: differential equation satisfied by u, if
functional has extreme values (#B{&)

— Euler equation is satisfied, if u provides extreme values of
1(u).

— provide extreme values : {28 =& % (or stationarize)
 For example, functional, which corresponds to

governing equations of linear elasticity (principle of

virtual work, equilibrium equations), is “principle of

minimum potential energy (principle of minimum strain

energy) (ZRILF—gw/ND, BEAIRILE—F/N) 7.
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Variational Method (Ritz) (2/2)
%53 i
o Substitute the following approx. solution into I(u),

and calculate coefficients a under the condition

where I,,=I(u,,) provides extreme values, then u,,
IS obtained:

M
Uy = ZaiLPi
=)

e Variational method is theoretical method, and
can be only applied to differential equations,
which has equivalent variational problem.

— In this class, we mainly use MWR
— Brief overview of Ritz method will be given.

44
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Application of Variational Method (1/5)

e Consider the following integration I(u) in 2D-domain
V, where u(x,y)is unknown function of x and y:

-

1[(ou? (ou) .
0)=[3 (a_ij +(a_;] _20u

.

dVv

'

Q: known value
u=0 at boundary S

e I(u) is “functional CGREE%) ” of function u
e U* IS a twice continuously differentiable function and
minimizes I(u). 77 1s an arbitrary function which

satisfies 7=0 at boundary S and a is a parameter.
Consider the following equation:

u(x, y)=u'(x,y)+a @(xy)

S
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Application of Variational Method (2/5)

« At this stage, the following condition is necessary

(WLEFEH)
()= 1 {u)

e Assume that functional I(u™+ an) is a function of a.
Functional | provides minimum value, if a=0.
Therefore, the following equation is obtained:

%l(uwaﬂ =0

e According to the definition of functional I(u),
following equation is obtained (next page)

I ou 0/7+0u a/7_Q,7 4V = 0
oX 0x oy oy

a=0

\Y,



FEM-intro

dVv

L —
Q)‘CD
< | C
N S

N
|
N
QO
C

2 * *
(@j _ou 0 (au} ou_olu +am)_ou", oy
ox 0a\o0x) OX 0X 0X 0X

aujzaﬂ a=0= 2 1(a_uf _ouap 0 |1fou)|_au ap
ox) ox da | 2\ ox ox ox oa |2\ dy dy oy

I[au 0n ., du a”—qudv:o
vl 0X 0x oy oy

47
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Application of Variational Method (3/5)

« Apply Green'’s theorem on 15t and 2" term of LHS,
and apply integration by parts, then following
equation is obtained: (A=n, B=u*) (next page) :

0°u’  0°u’ ou’
- + + dV+|n—dS=0
\-‘; ( ox*> oy’ Q}7 £/7 on

where ou _ou n +6Ln Gradient ofu* in the direction

on 0x = oy ’ of normal vector

e At boundary S n=0:

2, . 2, .*
- 5“2 +au2 +Qldv=0
0X oy

Vv

* (A) Is required, If the above is true for arbitrary n
0°u o°u

+
x> oy’

+Q=0 (A)
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Green’s Theorem
° (A:”, B:u*)

j ou 0n . ou on
oX Ox oy oy

- Q/])dv =0

o kA : .
,('7 0u2 +0u2 dV=j/70u 4S— J- 0/ ou +a/70u qv
v\ OX oy on oX 0Xx oy oy

J‘Laﬂ ou’ +6/7 au*jdvz_-‘.”(azu a u ]dV jl]ﬂds
Y,

ox 0x oy oay oL oxt oy’ L 0n
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Application of Variational Method (4/5)

 Equation (A) is called “Euler equation”

— Necessary condition (WESEH) of u*, which minimizes
functional 1(u), is that u* satisfies the Euler equation.

« Sufficient condition (+%5)
— Assume that u” is solution of the Euler equation and an=au

) 10)- o
_J(‘Z;{ +‘2;“2* +Qjau* dV+J'%{(a(ad){)j +(a(§;*)j }dv

a=0 A2=0
First Variation Second Variation
%_aﬁ:/\ %:a‘n/\

<
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Application of Variational Method (5/5)

It has been proved that u” (solution of Euler equation)
minimizes functional I(u).

o+ )> 1 ()

 Therefore, boundary value problem by Euler equation
(A) with B.C. (u=0@5S) Is equivalent to variational
problem.

— Solving equivalent variational problem provides solution of

Euler equation (Poisson’s equation/Heat Conduction
Equation in this case)

— Functional must exist !
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Approx. by Variational Method (1/4)

e Functional

1 2

I(u):j{l(@j —luz—xu}dx

o[ 2\dx) 2

e Boundary Condition
u=0@x=0

u=0@x=1

e Obtain u, which “stationalizes” functional I(u) under
this B.C.

— Corresponding Euler equation is as follows (same as
equation in p.21):
2

%+u+x:o (0< x<1) (B-1)
X
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Approx. by Variational Method (2/4)

« Assume the following test function with n-th order for
function u, which is twice continuously differentiable:

u, = x[{1-x)da, +a,x+ax? +--+ax"*) (B-2)

 If we increase the order of test function, u, Is closer
to exact solution u. Therefore, functional I(u) can be
approximated by I(u,):
— If I(u,)) stationarizes, I(u) also stationarizes.

* \We need to obtain set of unknown coefficients a,,
which satisfies the following stationary condition:

ol (u ) . _
. =0 (k=1~n) (B-3)
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Ritz Method

* Equation (B-3) is linear equations for a,-a..

 |f this solutions is applied to equation (B-2),
approximate solution, which satisfies Euler equation
(B-1), Is obtained.

— Approximate solution, but stationalizes I(u) strictly

* This type of method using a set of coefficients a;-a,, IS
called “Ritz Method”.



FFFFFFFF

Approx by Variational Method (3/4)
e Ritz Method, n=2

u, = x[L-x)la, +a,x) = x{il-x) & +x* [{L- x)a,

1

(T D(l_x_xz)(l_smz)dx}al
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Supplementation for (3/4) (1/3)

e Ritz Method n=2
u, = x[{L-x)a, +a,x) = x {1~ x) @& +x* [{1-x) &,

()= j{%[%j L xu}dx

2

:(1— 2x)a, + (2x—3x2)a2]2 —%[x - x) &, + x? [{L- x)@z]
< - X)a, + - X1,
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Supplementatlon for (3/4) (2/3)

(1-24)a, +(2x-3¢ ), - [l x)m, + ¢ - ), |
X2 [~ X) (3, + X (L~ aaz]

H{l 2x) )Z}dX}al
H{l 2x)(2x - 3x%) - x 3[Q1—X)2}dX}a2—jx2 f1- x)dx=0

0
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Supplementatlon for (3/4) (3/3)

(1-24)a, +(2x-3¢ ), - [l x)m, + ¢ - X,
X2 [~ X) (3, + X [fL- X aaz]

{(1— 2x)(2x-3x%) - x* ffiL- x)z}dx_ a,

1

1

" H{(Z -3¢ Xt~ X)Z}dx}az - [x*ffL-x)dx=0

0
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Approx. by Variational Method (4/4)

* Final linear equations are as follows:
3/10 3/20 1/12 ' _ 7
{3/20 13/105}{&12} {1/20} a7 369 41

u="27% 714 634
369

e This result Is identical with that of Galerkin Method
— NOT a coincidence !!

59
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Galerkin Method
* Weighting functions (which satisfy u=0@x=0,1),

Residual:
w, =W =x1-x), w,

=Y, =x°(1-X)

R(a,,a,,X) = X+ (-2+Xx—-x%)a, +(2-6x+Xx* - x%)a,

e Results:

"R(a,,a,, X)W, dx=
JO .

"R(a,a,, X)W, dx=
J0

X(1—X)
369

u-=

"R(a,,a,, X) (X=x2) dx=0
0

13/10 3/20 |[a| ([1/12
3/20 13/105||a,| |1/20

"R(a,.a,,X) 0C = %) dx=0
J0

(71+63X)
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1(duY _1 1!(%) _du, 0 (dj ( dw %)d_wl
{Z(dxj 5! —xu}dx da, | 2\ dx dx o0a, %0 %2 dx ) dx
% —u, }:@ = (a,w, +a,w, ) v

(Uz):o:> %_xuz]—x aai:xﬁyvl

dw \° dw dw 1 T2
(_le a, + dV‘ﬁ 2 az}dx —D w{(wa, +w,a, )+ X}dx} -0
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Ritz Method & Galerkin Method (2/4)
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Ritz Method & Galerkin Method (3/4)
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Ritz Method & Galerkin Method (4/4)

 This example is a very special case. But, generally
speaking, results of Galerkin method and Ritz
method agree, If functional exists.

« Although Ritz method provides approx. solution, that
satisfies Euler equation in strict sense. Therefore,
solution of Ritz method is closer to exact solution.

— This Is the main reason that Galerkin method Is accurate.
» Please just remember this.
e This relationship between Ritz and Galerkin is not
correct if functional does not exist.

— In these cases, Galerkin method is not necessarily the
best method from the viewpoint of accuracy and
robustness.
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