Introduction to Parallel Programming for Multicore/Manycore Clusters

Introduction

Kengo Nakajima Information Technology Center The University of Tokyo

http://nkl.cc.u-tokyo.ac.jp/20s/

Descriptions of the Class

- Technical & Scientific Computing I (4820-1027)
 - 科学技術計算 I
 - Department of Mathematical Informatics
- Special Lecture on Computational Alliance I(4810-1215)
 - 計算科学アライアンス特別講義 I
 - Department of Computer Science
- Multithreaded Parallel Computing (3747-110)
 - スレッド並列コンピューティング
 - Department of Electrical Engineering & Information Systems
- This class is certificated as the category "D" lecture of <u>"the Computational Alliance, the University of Tokyo"</u>

• 2009-2014

- Introduction to FEM Programming
 - FEM: <u>Finite-Element Method</u>:有限要素法
- Summer (I) : FEM Programming for Solid Mechanics
- Winter (II): Parallel FEM using MPI
 - The 1st part (summer) is essential for the 2nd part (winter)
- Problems
 - Many new (international) students in Winter, who did not take the 1st part in Summer
 - They are generally more diligent than Japanese students
- 2015
 - Summer (I) : Multicore programming by OpenMP
 - Winter (II): FEM + Parallel FEM by MPI/OpenMP for Heat Transfer
 - Part I & II are independent (maybe...)
- 2017
 - Lectures are given in English
 - Reedbush-U Supercomputer System
- 2020
 - Oakbridge-CX Supercomputer System

Motivation for Parallel Computing (and this class)

- Large-scale parallel computer enables fast computing in large-scale scientific simulations with detailed models. Computational science develops new frontiers of science and engineering.
- Why parallel computing ?
 - faster & larger
 - "larger" is more important from the view point of "new frontiers of science & engineering", but "faster" is also important.
 - + more complicated
 - Ideal: Scalable
 - Solving N^x scale problem using N^x computational resources during same computation time (weak scaling)
 - Solving a fix-sized problem using N^x computational resources in 1/N computation time (strong scaling)

Scientific Computing = SMASH

- You have to learn many things
- Collaboration/Co-Design needed
 - They will be important for future career of each of you, as a scientist and/or an engineer.
 - You have to communicate with people with different backgrounds
 - I hope you can extend your knowledge/experiences a little bit from your original area through this class for your future career
 - It is more difficult than communicating with foreign scientists from same area.
- (Q): Computer Science, Computational Science, or Numerical Algorithms ?

Science

<u>Modeling</u>

<u>Algorithm</u>

<u>Software</u>

Hardware

This Class ...

Science

<u>Modeling</u>

<u>Algorithm</u>

<u>Software</u>

<u>Hardware</u>

- <u>Target: Parallel FVM (Finite-</u> <u>Volume Method) using OpenMP</u>
- Science: 3D Poisson Equations
- Modeling: FVM
- Algorithm: Iterative Solvers etc.
- You have to know many components to learn FVM, although you have already learned each of these in undergraduate and high-school classes.

Road to Programming for "Parallel" Scientific Computing

Programming for Parallel Scientific Computing (e.g. Parallel FEM/FDM)

Programming for Real World Scientific Computing (e.g. FEM, FDM)

Programming for Fundamental Numerical Analysis (e.g. Gauss-Seidel, RK etc.)

Unix, Fortan, C etc.

Big gap here !!

7

Intro

The third step is important !

- How to parallelize applications ?
 - How to extract parallelism ?
 - If you understand methods, algorithms, and implementations of the original code, it's easy.
 - "Data-structure" is important

4. Programming for Parallel Scientific Computing (e.g. Parallel FEM/FDM)

3. Programming for Real World Scientific Computing (e.g. FEM, FDM)

2. Programming for Fundamental Numerical Analysis (e.g. Gauss-Seidel, RK etc.)

1. Unix, Fortan, C etc.

- How to understand the code ?
 - Reading the application code !!
 - It seems primitive, but very effective.
 - In this class, "reading the source code" is encouraged.
 - 3: FVM, 4: Parallel FVM

<u>Kengo Nakajima 中島研吾 (1/2)</u>

Current Position

- Professor, Supercomputing Research Division, Information Technology Center, The University of Tokyo(情報基盤センター)
 - Department of Mathematical Informatics, Graduate School of Information Science & Engineering, The University of Tokyo(情報理工・数理情報学)
 - Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo(工・電気系工学)
- Deputy Director, RIKEN R-CCS (Center for Computational Science) (Kobe) (20%) (2018.Apr.-)
- Research Interest
 - High-Performance Computing
 - Parallel Numerical Linear Algebra (Preconditioning)
 - Parallel Programming Model
 - Computational Mechanics, Computational Fluid Dynamics
 - Adaptive Mesh Refinement, Parallel Visualization

<u>Kengo Nakajima (2/2)</u>

- Education
 - B.Eng (Aeronautics, The University of Tokyo, 1985)
 - M.S. (Aerospace Engineering, University of Texas, 1993)
 - Ph.D. (Quantum Engineering & System Sciences, The University of Tokyo, 2003)
- Professional
 - Mitsubishi Research Institute, Inc. (1985-1999)
 - Research Organization for Information Science & Technology (1999-2004)
 - The University of Tokyo
 - Department Earth & Planetary Science (2004-2008)
 - Information Technology Center (2008-)
 - JAMSTEC (2008-2011), part-time
 - RIKEN (2009-2018), part-time

- Supercomputers and Computational Science
- Overview of the Class
- Future Issues

Computer & CPU

- Central Processing Unit (中央処理装置):CPU
- CPU's used in PC and Supercomputers are based on same architecture
- GHz: Clock Rate
 - Frequency: Number of operations by CPU per second
 - GHz -> 10⁹ operations/sec
 - Simultaneous 4-8 (or more) instructions per clock

Multicore CPU

GPU/Manycores

- GPU: Graphic Processing Unit
 - GPGPU: General Purpose GPU
 - O(10²) cores
 - High Memory Bandwidth
 - (was) cheap
 - NO stand-alone operations
 - Host CPU needed
 - Programming: CUDA, OpenACC
- Intel Xeon/Phi: Manycore CPU
 - 60+ cores
 - High Memory Bandwidth
 - Unix, Fortran, C compiler
 - Host CPU NOT needed
 - Needed in the 1st generation

Parallel Supercomputers

Multicore CPU's are connected through network

Supercomputers with Heterogeneous/Hybrid Nodes

Performance of Supercomputers

- Performance of CPU: Clock Rate
- FLOPS (Floating Point Operations per Second)
 Real Number
- Recent Multicore CPU
 - 4-8 (or more) FLOPS per Clock
 - (e.g.) Peak performance of a core with 3GHz
 - 3 × 10⁹ × 4(or 8)=12(or 24) × 10⁹ FLOPS=12(or 24)GFLOPS
 - 10⁶ FLOPS= 1 Mega FLOPS = 1 MFLOPS
 - 10⁹ FLOPS= 1 Giga FLOPS = 1 GFLOPS
 - 10¹² FLOPS= 1 Tera FLOPS = 1 TFLOPS
 - 10¹⁵ FLOPS= 1 Peta FLOPS = 1 PFLOPS
 - 10¹⁸ FLOPS= 1 Exa FLOPS = 1 EFLOPS

Peak Performance of Oakbridge-CX Intel Xeon Plarinum 8280 (Cascade Lake, Intel Xeon SP)

- 2.7 GHz
 - 32 DP (Double Precision) FLOP operations per Clock
- Peak Performance (1 core)
 - 2.7 × 32= 86.4 GFLOPS
- Peak Performance
 - 1-Socket, 28 cores: 2,419.2 GFLOPS= 2.419 TFLOPS
 - 2-Sockets, 56 cores: 4,838.4 GFLOPS= 4.838 TFLOPS 1-Node

TOP 500 List

http://www.top500.org/

- Ranking list of supercomputers in the world
- Performance (FLOPS rate) is measured by "Linpack" which solves large-scale linear equations.
 - Since 1993
 - Updated twice a year (International Conferences in June and November)
- Linpack
 - Available in iPhone and Android
- Oakbridge-CX (OBCX) is 50th in the TOP 500 (November 2019)

Linpack on My iPhone XS

- Performance of my iPhone XS is about 20,000 Mflops
- Cray-1S
 - Supercomputer of my company in 1985 with <u>80 Mflops</u>
 - I do not know the price, but we had to pay 10 USD for 1 sec. computing !

Linpack on My iPhone XS

20:27		•••• 4G		
Q Linp	ack	⊗ キャンセル		Low-Power Mo
			iPhone11.2-D321AP / 6 cores	iPhone11 2-D3214P / 6 cores
Linpack	Linpack ユーティリティ	間く	Problem size: 500	Problem size: 500
Beichmaik	****1	10 x	Number of runs: 10	Number of runs: 10
	0-0 visa Disea2(1-00140/2 torns	An HILL	Multithread mode:	Multithread mode:
	Nambov of term 33 Webbitmad reader		Run benchmark	Run benchmark
	Mikalis 1222.00 Yees 5.1422 Newsities 5.2000 Personal 2.22044006a-65		Run: #10	Run: #10
			Mflop/s: 18800.05	Mflop/s: 8359.34
			Time: 0.0364	Time: 0.0726
			Norm Res: 5.1700	Norm Res: 5.1700
			Precision: 2.22044605e-16	Precision: 2.22044605e-16
	Mobile Linpack		Max Mflop/s: 20627.07	Max Mflop/s: 11868.06
	ユーティリティ	入手	Avg Mflop/s: 17294.78	Avg Mflop/s: 9329.87
		Results	Interview ライブドアニュース インストール	▲ App Store Ivedmon ライブドアニュース ▼○ 無料
		Own		iBhana11 2 D2214D / 6 cores
		45	Problem size: 500	Problem size: 500
		<u></u> Q	Number of runs: 10	Number of runs: 10
Today	ゲーム App	Arcade 検索	Multithread mode:	Multithread mode: O
		_	Run benchmark	Run benchmark
			Run: #10	Run: #10
			Mflop/s: 5511.57	Mflop/s: 3737.27
			Time: 0.0152	Time: 0.0224
			Norm Res: 5.1700	Norm Res: 5.1700
			Precision: 2.22044605e-16	Precision: 2.22044605e-16
			Max Mflop/s: 5521.89	Max Mflop/s: 3769.22
			Avg Mflop/s: 4921.39	Avg Mflop/s: 3586.08

You can change Problem size, and # of runs.

Mode

- "Size=500" means
 linear equations
 Ax=b with 500
 unknowns are
 solved
- Actually, problem size affects performance of computing so much !!

Performance Development

Sum

#1

#500

- PFLOPS: Peta (=10¹⁵) Floating OPerations per Sec.
 - Exa-FLOPS (=10¹⁸) will be attained in 2021

Benchmarks

- TOP 500 (Linpack, HPL(High Performance Linpack))
 - Direct Linear Solvers, FLOPS rate
 - Regular Dense Matrices, Continuous Memory Access
 - Computing Performance
- HPCG
 - Preconditioned Iterative Solvers, FLOPS rate
 - Irregular Sparse Matrices derived from FEM Applications with Many "0" Components
 - Irregular/Random Memory Access,
 - Closer to "Real" Applications than HPL
 - Performance of Memory, Communications
- Green 500
 - FLOPS/W rate for HPL (TOP500)

54th TOP500 List (Nov., 2019) Oakbridge-CX (OBCX) is 50th

R_{max}: Performance of Linpack (TFLOPS) R_{peak}: Peak Performance (TFLOPS), Power: kW

http://www.top500.org/

	Site	Computer/Year Vendor	Cores	R _{max} (TFLOPS)	R _{peak} (TFLOPS)	Power (kW)
1	<u>Summit, 2018, USA</u> DOE/SC/Oak Ridge National Laboratory	IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband	2,414,592	148,600 (= 148.6 PF)	200,795	10,096
2	<u>Sieera, 2018, USA</u> DOE/NNSA/LLNL	IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband	1,572,480	94,640	125,712	7,438
3	Sunway TaihuLight, 2016, China National Supercomputing Center in Wux	Sunway MPP, Sunway SW26010 260C i1.45GHz, Sunway	10,649,600	93,015	125,436	15,371
4	<u>Tianhe-2A, 2018, China</u> National Super Computer Center in Guangzhou	TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000	4,981,760	61,445	100,679	18,482
5	Frontera, 2019, USA Texas Advanced Computing Center	Dell C6420, Xeon Platinum 8280 28c 2.7GHz, Mellanox Infiniband HDR	448,448	23,516	38,746	
6	<u>Piz Daint, 2017, Switzerland</u> Swiss National Supercomputing Centre (CSCS)	Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect , NVIDIA Tesla P100	387,872	21,230	27,154	2,384
7	Trinity, 2017, USA DOE/NNSA/LANL/SNL	Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect	979,072	20,159	41,461	7,578
8	ABCI (AI Bridging Cloud Infrastructure), 2018, Japan National Institute of Advanced Industrial Science and Technology (AIST)	PRIMERGY CX2550 M4, Xeon Gold 6148 20C 2.4GHz, NVIDIA Tesla V100 SXM2, Infiniband EDR	391,680	19,880	32,577	1,649
9	<u>SuperMUC-NG, 2018, Germany</u> Leibniz Rechenzentrum	Lenovo, ThinkSystem SD650, Xeon Platinum 8174 24C 3.1GHz, Intel Omni-Path	305,856	19,477	26,874	
10	<u>Lassen, 2019, USA</u> DOE/NNSA/LLNL	IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA Volta V100, Dual-rail Mellanox EDR Infiniband	288,288	18,200	23,047	
15	Oakforest-PACS, 2016, Japan Joint Center for Advanced High Performance Computing	PRIMERGY CX1640 M1, Intel Xeon Phi 7250 68C 1.4GHz, Intel Omni-Path	556,104	13,556	24,913	2,719

HPCG Ranking (November, 2019)

	Computer	Cores	HPL Rmax (Pflop/s)	TOP500 Rank	HPCG (Pflop/s)
1	Summit	2,414,592	148,600	1	2.926
2	Sierra	1,572,480	94.640	2	1.796
3	Trinity	979,072	20,159	7	0.546
4	ABCI	391,680	19,880	8	0.509
5	Piz Daint	387,872	21.230	6	0.497
6	Sunway TaihuLight	10,649,600	93.015	3	0.481
7	Nurion (KISTI, Korea)	570,020	13.929	14	0.391
8	Oakforest-PACS	556,104	13.555	15	0.385
9	Cori (NERSC/LBNL, USA)	632,400	14.015	13	0.355
10	Tera-100-2 (CEA, France)	622,336	11.965	17	0.334

Green 500 Ranking (November, 2019)

http://www.top500.org/

	TOP 500 Rank	System	Cores	HPL Rmax (Pflop/s)	Power (MW)	GFLOPS/W
1	159	A64FX Prototype (Fugaku), Japan	36,864	1,999.5	118	16.876
2	420	NA-1, PEZY, Japan	1,271,040	1,303.2	80	16.256
3	24	AiMOS, IBM, USA	130,000	8,045.0	510	15.771
4	373	Satori, IBM, USA	23,040	1,464.0	94	15.574
5	1	Summit, USA	2,414,592	148,600	10,096	14.719
6	8	ABCI, Japan	391,680	19,880	1,649	14.423
7	494	MareNostrum P9 CTE, Spain	18,360	1,145	81	14.131
8	23	TSUBAME 3.0, Japan	135,828	8,125	792	13.704
9	11	PANGEA III, France	291,024	17,860	1,367	13.065
10	2	Sierra, USA	1,572,480	94,640	7,438	12.723
13	3 June'18	Reedbush-L, U.Tokyo, Japan	16,640	806	79	10.167
19		Reedbush-H, U.Tokyo, Japan	17,760	802	94	8.576

Computational Science The 3rd Pillar of Science

- Theoretical & Experimental Science
- Computational Science
 - The 3rd Pillar of Science
 - Simulations using Supercomputers

Methods for Scientific Computing

- Numerical solutions of PDE (Partial Diff. Equations)
- Grids, Meshes, Particles
 - Large-Scale Linear Equations
 - Finer meshes provide more accurate solutions

境界要素法 Boundary Element Method BEM

個別要素法 Discrete Element Method DEM

3D Simulations for Earthquake Generation Cycle San Andreas Faults, CA, USA

Stress Accumulation at Transcurrent Plate Boundaries Adaptive Mesh Refinement (AMR)

Adaptive FEM: High-resolution needed at meshes with large deformation (large accumulation)

Typhoon Simulations by FDM Effect of Resolution

[JAMSTEC]

Intro

[Dr. Hajime Yamamoto, Taisei]

- International/Interdisciplinary
 Collaborations
 - Taisei (Science, Modeling)
 - Lawrence Berkeley National Laboratory, USA (Modeling)
 - Information Technology Center, the University of Tokyo (Algorithm, Software)
 - JAMSTEC (Earth Simulator Center) (Software, Hardware)
 - NEC (Software, Hardware)
- 2010 Japan Geotechnical Society (JGS) Award

- Science
 - Behavior of CO₂ in supercritical state at deep reservoir
- PDE's
 - 3D Multiphase Flow (Liquid/Gas) + 3D Mass Transfer
- Method for Computation
 - TOUGH2 code based on FVM, developed by Lawrence Berkeley National Laboratory, USA
 - More than 90% of computation time is spent for solving large-scale linear equations with more than 10⁷ unknowns
- Numerical Algorithm
 - Fast algorithm for large-scale linear equations developed by Information Technology Center, the University of Tokyo
- Supercomputer
 - Earth Simulator II (NEX SX9, JAMSTEC, 130 TFLOPS)
 - Oakleaf-FX (Fujitsu PRIMEHP FX10, U.Tokyo, 1.13 PFLOPS

Diffusion-Dissolution-Convection Process

- Buoyant scCO₂ overrides onto groundwater
- Dissolution of CO₂ increases water density
- Denser fluid laid on lighter fluid
- Rayleigh-Taylor instability invokes convective mixing of groundwater

The mixing significantly enhances the CO₂ dissolution into groundwater, resulting in more stable storage

Preliminary 2D simulation (Yamamoto et al., GHGT11) [Dr. Hajime Yamamoto, Taisei]

Density convections for 1,000 years: Flow Model

Only the far side of the vertical cross section passing through the injection well is depicted.

Reservoir Condition

- Permeability: 100 md
- Porosity: 20%
- Pressure: 3MPa
- Temperature: 100°C
- Salinity: 15wt%

[Dr. Hajime Yamamoto, Taisei]

- The meter-scale fingers gradually developed to larger ones in the field-scale model
- Huge number of time steps (> 10⁵) were required to complete the 1,000-yrs simulation
- Onset time (10-20 yrs) is comparable to theoretical (linear stability analysis, 15.5yrs)

30 million DoF (10 million grids \times 3 DoF/grid node)

-Large scale hydro-geological model-Injection Well **30 million DoF** 10km (b) DDC (Diffusion-Dissolution-Convection) -Highly non linear process model-Caprock (Low permeable seal) Native Groundwater (Bring 6 million DoF (c) SPE 10 Model -Highly heterogeneous reservoir model-3.3 million DoF **Reservior Model** Christie and Blunt (2001) Qi et al. (2009) Audigane et al. (2011) CO, behavior (No upscaling) Yamamoto et al. (2013) **3D Multiphase Flow** (Liquid/Gas) + 3D

Mass Transfer

Motivation for Parallel Computing, again

- Large-scale parallel computer enables fast computing in large-scale scientific simulations with detailed models. Computational science develops new frontiers of science and engineering.
- Why parallel computing ?
 - faster
 - larger
 - "larger" is more important from the view point of "new frontiers of science & engineering", but "faster" is also important.
 - + more complicated
 - Ideal: Scalable
 - Weak Scaling, Strong Scaling

- Supercomputers and Computational Science
- Overview of the Class
- Future Issues

Our Current Target: Multicore Cluster

Multicore CPU's are connected through network

- OpenMP
 - Multithreading
 - ✓ Intra Node (Intra CPU)
 - ✓ Shared Memory

- Message Passing
- ✓ Inter Node (Inter CPU)
- ✓ Distributed Memory

Our Current Target: Multicore Cluster

Multicore CPU's are connected through network

- OpenMP
 - ✓ Multithreading
 - ✓ Intra Node (Intra CPU)
 - ✓ Shared Memory

• MPI

- ✓ Message Passing
- ✓ Inter Node (Inter CPU)
- ✓ Distributed Memory

Our Current Target: Multicore Cluster

Multicore CPU's are connected through network

- OpenMP
 - ✓ Multithreading
 - ✓ Intra Node (Intra CPU)
 - ✓ Shared Memory

- MPI (after October)
 - ✓ Message Passing
 - ✓ Inter Node (Inter CPU)
 - ✓ Distributed Memory

Flat MPI vs. Hybrid

Flat-MPI: Each Core -> Independent

Hybrid: Hierarchal Structure

Example of OpnMP/MPI Hybrid Sending Messages to Neighboring Processes

MPI: Message Passing, OpenMP: Threading with Directives

```
10
!C- SEND
     do neib= 1, NEIBPETOT
       II= (LEVEL-1) *NEIBPETOT
        istart= STACK_EXPORT(II+neib-1)
        inum = STACK_EXPORT(II+neib) - istart
!$omp parallel do
       do k= istart+1, istart+inum
         WS(k-NEO) = X(NOD EXPORT(k))
       enddo
        call MPI_Isend (WS(istart+1-NEO), inum, MPI_DOUBLE_PRECISION,
                                                                          &
    &
                        NEIBPE (neib), 0, MPI_COMM_WORLD,
                                                                           &
     &
                        req1(neib), ierr)
     enddo
```

Overview of This Class (1/3)

- https://nkl.cc.u-tokyo.ac.jp/20s/
- In order to make full use of modern supercomputer systems with multicore/manycore architectures, hybrid parallel programming with message-passing and multithreading is essential.
- While MPI is widely used for message-passing, OpenMP for CPU and OpenACC for GPU are the most popular ways for multithreading on multicore/manycore clusters.
- In this class, we "parallelize" a finite-volume method code with Krylov iterative solvers for Poisson's equation on <u>Oakbridge-CX (OBCX)</u> Supercomputer with Intel Cascade Lake (CLX) at the University of Tokyo.
 - Because of limitation of time, we are (mainly) focusing on multithreading by OpenMP.

Flat MPI vs. Hybrid

Flat-MPI : Each PE -> Independent

Hybrid: Hierarchal Structure

Overview of This Class (2/3)

- We "parallelize" a finite-volume method (FVM) code with Krylov iterative solvers for Poisson's equation.
- Derived linear equations are solved by ICCG (Conjugate Gradient iterative solvers with Incomplete Cholesky preconditioning), which is a widely-used method for solving linear equations.
- Because ICCG includes "data dependency", where writing/reading data to/from memory could occur simultaneously, parallelization using OpenMP is not straight forward.
- We need certain kind of reordering in order to extract parallelism.

Overview of This Class (3/3)

- Lectures and exercise on the following issues <u>related to</u> <u>OpenMP</u> will be conducted:
 - Overview of Finite-Volume Method (FVM)
 - Kyrilov Iterative Method, Preconditioning
 - Implementation of the Program
 - Introduction to OpenMP
 - Reordering/Coloring Method
 - Parallel FVM by OpenMP

Date	ID	Title
Apr-08 (W)	CS-01a	Introduction-a
Apr-15 (W)	CS-01b	Introduction-b (Introduction-a and -b are same)
Apr-22 (W)	CS-02	FVM (1/3)
Apr-29 (W)	(no class)	(National Holiday)
May-06 (W)	(no class)	(National Holiday)
May-13 (W)	CS-03	FVM (2/3)
May-20 (W)	CS-04	FVM (3/3), OpenMP (1/3)
May-27 (W)	CS-05	OpenMP (2/3), Login to OBCX
Jun-03 (W)	CS-06	OpenMP (3/3)
Jun-10 (W)	CS-07	Reordering (1/2)
Jun-17 (W)	CS-08	Reordering (2/2)
Jun-24 (W)	(canceled)	
Jul-01 (W)	CS-09	Tuning
Jul-08 (W)	CS-10	Parallel Code by OpenMP (1/2)
Jul-15 (W)	CS-11	Parallel Code by OpenMP (2/2)
Jul-22 (W)	CS-12	Advanced Topics, Q/A

"Prerequisites"

- Fundamental physics and mathematics
 - Linear algebra, analytics
- Experiences in fundamental numerical algorithms
 - Gaussian Elimination, LU Factorization
 - Jacobi/Gauss-Seidel/SOR Iterative Solvers
 - Conjugate Gradient Method (CG)
- Experiences in programming by C or Fortran
- Experiences in Unix/Linux (vi or emacs)
 - If you are not familiar with Unix/Linux (vi or emacs), please try "Introduction Unix", "Introduction emacs" in google.
- Experiences in Programming by C/C++/Fortran
- User account of ECCS2016 must be obtained (later)
 - <u>https://www.ecc.u-tokyo.ac.jp/en/newaccount.html</u>

Strategy

- If you can develop programs by yourself, it is ideal... but difficult.
 - You can focuse on "reading", not developing by yourself
 - Programs are in C and Fortran
 - Lectures are done by ...
- Lecture Materials
 - available at **NOON Moday** through WEB.
 - http://nkl.cc.u-tokyo.ac.jp/20s/
 - NO hardcopy is provided
- Starting at 08:30
 - You can enter the building/ZOOM classroom after 08:00
- In the Classroom ...
 - Taking seats from the front row
 - Terminals must be shut-down after class

Grades

• 1 Report on programming

If you have any questions, please feel free to contact me !

- Office: 3F Annex/Information Technology Center #36

 – 情報基盤センター別館3F 36号室
- ext.: 22719
- e-mail: nakajima(at)cc.u-tokyo.ac.jp
- NO specific office hours, appointment by e-mail
- http://nkl.cc.u-tokyo.ac.jp/20s/
- <u>http://nkl.cc.u-tokyo.ac.jp/seminars/multicore/</u>日本語資料 (一部)

Keywords for OpenMP

- OpenMP
 - Directive based, (seems to be) easy
 - Many books
- Data Dependency
 - Conflict of reading from/writing to memory
 - Appropriate reordering of data is needed for "consistent" parallel computing
 - NO detailed information in OpenMP books: very complicated

Some Technical Terms

- Processor, Core
 - Processing Unit (H/W), Processor=Core for single-core proc's
- Process
 - Unit for MPI computation, nearly equal to "core"
 - Each core (or processor) can host multiple processes (but not efficient)
- PE (Processing Element)
 - PE originally mean "processor", but it is sometimes used as "process" in this class. Moreover it means "domain" (next)
 - In multicore proc's: PE generally means "core"
- Domain
 - domain=process (=PE), each of "MD" in "SPMD", each data set
 - Domain Decomposition

Preparation

- Windows
 - Cygwin with gcc/gfortran and OpenSSH
 - Please make sure to install gcc (C) or gfortran (Fortran) in "Devel", and OpenSSH in "Net"
 - ParaView
- MacOS, UNIX/Linux
 - ParaView
- Cygwin: <u>https://www.cygwin.com/</u>
- ParaView: <u>http://www.paraview.org</u>

- Supercomputers and Computational Science
- Overview of the Class
- Future Issues

Technical Issues: Future of Supercomputers

- Power Consumption
- Reliability, Fault Tolerance, Fault Resilience
- Scalability (Parallel Performance)

Key-Issues towards Appl./Algorithms on Exa-Scale Systems Jack Dongarra (ORNL/U. Tennessee) at ISC 2013

- Hybrid/Heterogeneous Architecture
 - Multicore + GPU/Manycores (Intel MIC/Xeon Phi)
 - Data Movement, Hierarchy of Memory
- Communication/Synchronization Reducing Algorithms
- Mixed Precision Computation
- Auto-Tuning/Self-Adapting
- Fault Resilient Algorithms
- Reproducibility of Results

Supercomputers with Heterogeneous/Hybrid Nodes

