
Introduction to Parallel
Programming for

Multicore/Manycore Clusters

Introduction

Kengo Nakajima
Information Technology Center

The University of Tokyo

http://nkl.cc.u-tokyo.ac.jp/20s/

Descriptions of the Class
• Technical & Scientific Computing I (4820-1027)

– 科学技術計算Ⅰ

– Department of Mathematical Informatics

• Special Lecture on Computational Alliance I(4810-1215)
– 計算科学アライアンス特別講義Ⅰ

– Department of Computer Science

• Multithreaded Parallel Computing (3747-110)
– スレッド並列コンピューティング
– Department of Electrical Engineering & Information Systems

• This class is certificated as the category “D” lecture of
"the Computational Alliance, the University of Tokyo"

2

• 2009-2014
– Introduction to FEM Programming

• FEM: Finite-Element Method：有限要素法
– Summer (I) : FEM Programming for Solid Mechanics
– Winter (II): Parallel FEM using MPI

• The 1st part (summer) is essential for the 2nd part (winter)

• Problems
– Many new (international) students in Winter, who did not take the

1st part in Summer
– They are generally more diligent than Japanese stud ents

• 2015
– Summer (I) : Multicore programming by OpenMP
– Winter (II): FEM + Parallel FEM by MPI/OpenMP for Heat Transfer

• Part I & II are independent (maybe...)

• 2017
– Lectures are given in English
– Reedbush-U Supercomputer System

• 2020
– Oakbridge-CX Supercomputer System

3

4

Motivation for Parallel Computing
(and this class)

• Large-scale parallel computer enables fast computing in
large-scale scientific simulations with detailed models.
Computational science develops new frontiers of science
and engineering.

• Why parallel computing ?
– faster & larger
– “larger” is more important from the view point of “new frontiers of

science & engineering”, but “faster” is also important.
– + more complicated
– Ideal: Scalable

• Solving Nx scale problem using Nx computational resources during same
computation time (weak scaling)

• Solving a fix-sized problem using Nx computational resources in 1/N
computation time (strong scaling)

Intro

Scientific Computing = SMASH
• You have to learn many things
• Collaboration/Co-Design needed

– They will be important for future career of
each of you, as a scientist and/or an
engineer.

– You have to communicate with people
with different backgrounds

• I hope you can extend your
knowledge/experiences a little bit from
your original area through this class for
your future career

– It is more difficult than communicating
with foreign scientists from same area.

• (Q): Computer Science,
Computational Science, or Numerical
Algorithms ?

5Intro

Science

Modeling

Algorithm

Software

Hardware

This Class ...

• Target: Parallel FVM (Finite -
Volume Method) using OpenMP

• Science: 3D Poisson Equations
• Modeling: FVM
• Algorithm: Iterative Solvers etc.

• You have to know many components
to learn FVM, although you have
already learned each of these in
undergraduate and high-school
classes.

6Intro

Science

Modeling

Algorithm

Software

Hardware

Road to Programming for “Parallel”
Scientific Computing

7Intro

Unix, Fortan, C etc.

Programming for Fundamental
Numerical Analysis

(e.g. Gauss-Seidel, RK etc.)

Programming for Real World
Scientific Computing

(e.g. FEM, FDM)

Programming for Parallel
Scientific Computing

(e.g. Parallel FEM/FDM)

Big gap here !!

Intro

The third step is important !

• How to parallelize applications ?
– How to extract parallelism ?
– If you understand methods, algorithms,

and implementations of the original
code, it’s easy.

– “Data-structure” is important

• How to understand the code ?
– Reading the application code !!
– It seems primitive, but very effective.
– In this class, “reading the source code” is encouraged.
– 3: FVM, 4: Parallel FVM

8

1. Unix, Fortan, C etc.

2. Programming for Fundamental
Numerical Analysis

(e.g. Gauss-Seidel, RK etc.)

3. Programming for Real World
Scientific Computing

(e.g. FEM, FDM)

4. Programming for Parallel
Scientific Computing

(e.g. Parallel FEM/FDM)

Kengo Nakajima 中島研吾 (1/2)
• Current Position

– Professor, Supercomputing Research Division, Information
Technology Center, The University of Tokyo（情報基盤センター）

• Department of Mathematical Informatics, Graduate School of Information
Science & Engineering, The University of Tokyo（情報理工・数理情報学）

• Department of Electrical Engineering and Information Systems, Graduate
School of Engineering, The University of Tokyo（工・電気系工学）

– Deputy Director, RIKEN R-CCS (Center for Computational
Science) (Kobe) (20%) (2018.Apr.-)

• Research Interest
– High-Performance Computing
– Parallel Numerical Linear Algebra (Preconditioning)
– Parallel Programming Model
– Computational Mechanics, Computational Fluid Dynamics
– Adaptive Mesh Refinement, Parallel Visualization

9

Kengo Nakajima (2/2)
• Education

– B.Eng (Aeronautics, The University of Tokyo, 1985)
– M.S. (Aerospace Engineering, University of Texas, 1993)
– Ph.D. (Quantum Engineering & System Sciences, The University

of Tokyo, 2003)

• Professional
– Mitsubishi Research Institute, Inc. (1985-1999)
– Research Organization for Information Science & Technology

(1999-2004)
– The University of Tokyo

• Department Earth & Planetary Science (2004-2008)
• Information Technology Center (2008-)

– JAMSTEC (2008-2011), part-time
– RIKEN (2009-2018), part-time

10

• Supercomputers and Computational Science
• Overview of the Class
• Future Issues

11Intro

Computer & CPU

• Central Processing Unit （中央処理装置）：CPU
• CPU’s used in PC and Supercomputers are based on

same architecture
• GHz: Clock Rate

– Frequency: Number of operations by CPU per second
• GHz -> 109 operations/sec

– Simultaneous 4-8 (or more) instructions per clock

12Intro

Multicore CPU
13

CPU

コア（Core）

CPU
Core

Core

CPU
Core

Core

Core

Core

Single Core
1 cores/CPU

Dual Core
2 cores/CPU

Quad Core
4 cores/CPU

• GPU: Manycore
– O(101)-O(102) cores

• More and more cores
– Parallel computing

• Core= Central
part of CPU

• Multicore CPU’s
with 4-8 cores
are popular
– Low Power

Intro

• Oakbridge-CX: 28 cores x 2
– Intel Xeon Platinum 8280
– Cascade Lake, CLX
– Intel Xeon SP

• Scalable Processor

Intel® Xeon®
Platinum 8280

(Cascade Lake, CLX)
2.7GHz, 28-Cores

2.419 TFLOPS
Soc. #1: 28th-55th cores

Memory
96 GB

UPI
Intel® Xeon®
Platinum 8280

(Cascade Lake, CLX)
2.7GHz, 28-Cores

2.419 TFLOPS
Soc. #0: 0th-27th cores

DDR4
DDR4
DDR4
DDR4
DDR4
DDR4

2933 MHz×6ch
140.8 GB/sec

UPI

UPI

Ultra Path Interconnect
10.4 GT/sec ×3
= 124.8 GB/sec

DDR4
DDR4
DDR4
DDR4
DDR4
DDR4

2933 MHz×6ch
140.8 GB/sec

Memory
96 GB

GPU/Manycores
• GPU：Graphic Processing Unit

– GPGPU: General Purpose GPU
– O(102) cores
– High Memory Bandwidth
– (was) cheap
– NO stand-alone operations

• Host CPU needed

– Programming: CUDA, OpenACC

• Intel Xeon/Phi: Manycore CPU
– 60+ cores
– High Memory Bandwidth
– Unix, Fortran, C compiler
– Host CPU NOT needed

• Needed in the 1st generation

14Intro

Parallel Supercomputers
Multicore CPU’s are connected through network

15

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

Intro

Supercomputers with
Heterogeneous/Hybrid Nodes

16

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

Intro

17

Performance of Supercomputers
• Performance of CPU: Clock Rate
• FLOPS (Floating Point Operations per Second)

– Real Number

• Recent Multicore CPU
– 4-8 (or more) FLOPS per Clock
– (e.g.) Peak performance of a core with 3GHz

• 3×109×4(or 8)=12(or 24)×109 FLOPS=12(or 24)GFLOPS

• 106 FLOPS= 1 Mega FLOPS = 1 MFLOPS
• 109 FLOPS= 1 Giga FLOPS = 1 GFLOPS
• 1012 FLOPS= 1 Tera FLOPS = 1 TFLOPS
• 1015 FLOPS= 1 Peta FLOPS = 1 PFLOPS
• 1018 FLOPS= 1 Exa FLOPS = 1 EFLOPS

Intro

18

Peak Performance of Oakbridge -CX
Intel Xeon Plarinum 8280 (Cascade Lake, Intel Xeon SP)

• 2.7 GHz
– 32 DP (Double Precision) FLOP operations per Clock

• Peak Performance (1 core)
– 2.7×32= 86.4 GFLOPS

• Peak Performance
– 1-Socket, 28 cores: 2,419.2 GFLOPS= 2.419 TFLOPS

– 2-Sockets, 56 cores: 4,838.4 GFLOPS= 4.838 TFLOPS 1-Node

Intro

Intel® Xeon®
Platinum 8280

(Cascade Lake, CLX)
2.7GHz, 28-Cores

2.419 TFLOPS
Soc. #1: 28th-55th cores

Memory
96 GB

UPI
Intel® Xeon®
Platinum 8280

(Cascade Lake, CLX)
2.7GHz, 28-Cores

2.419 TFLOPS
Soc. #0: 0th-27th cores

DDR4
DDR4
DDR4
DDR4
DDR4
DDR4

2933 MHz×6ch
140.8 GB/sec

UPI

UPI

Ultra Path Interconnect
10.4 GT/sec ×3
= 124.8 GB/sec

DDR4
DDR4
DDR4
DDR4
DDR4
DDR4

2933 MHz×6ch
140.8 GB/sec

Memory
96 GB

19

TOP 500 List
http://www.top500.org/

• Ranking list of supercomputers in the world
• Performance (FLOPS rate) is measured by “Linpack”

which solves large-scale linear equations.
– Since 1993
– Updated twice a year (International Conferences in June and

November)

• Linpack
– Available in iPhone and Android

• Oakbridge-CX (OBCX) is 50th in the TOP 500
(November 2019)

Intro

20

Linpack on My iPhone XS
Intro

Normal Mode Low -Power Mode

Multithread
(parallel)

Single-thread
(serial)

• Performance of my
iPhone XS is about
20,000 Mflops

• Cray-1S
– Supercomputer of

my company in
1985 with 80 Mflops

– I do not know the
price, but we had to
pay 10 USD for 1
sec. computing !

Cray-1S

21

Linpack on My iPhone XS
Intro

Normal Mode Low -Power Mode

• You can change
Problem size, and
of runs.
– “Size=500” means

linear equations
Ax=b with 500
unknowns are
solved

• Actually, problem
size affects
performance of
computing so
much !!

22

• PFLOPS: Peta
(=1015) Floating
OPerations per
Sec.

• Exa-FLOPS
(=1018) will be
attained in 2021
…

Intro

http://www.top500.org/

Benchmarks
• TOP 500 (Linpack，HPL(High Performance Linpack))

– Direct Linear Solvers, FLOPS rate

– Regular Dense Matrices, Continuous Memory Access

– Computing Performance

• HPCG
– Preconditioned Iterative Solvers, FLOPS rate

– Irregular Sparse Matrices derived from FEM Applications
with Many “0” Components

• Irregular/Random Memory Access,

• Closer to “Real” Applications than HPL

– Performance of Memory, Communications

• Green 500
– FLOPS/W rate for HPL (TOP500) 23

24

http://www.top500.org/

54th TOP500 List (Nov., 2019)
Oakbridge -CX (OBCX) is 50th

Rmax: Performance of Linpack (TFLOPS)
Rpeak: Peak Performance (TFLOPS),
Power: kW

Site Computer/Year Vendor Cores
Rmax

(TFLOPS)
Rpeak

(TFLOPS)
Power
(kW)

1 Summit, 2018, USA
DOE/SC/Oak Ridge National Laboratory

IBM Power System AC922, IBM POWER9
22C 3.07GHz, NVIDIA Volta GV100, Dual-rail
Mellanox EDR Infiniband

2,414,592
148,600

(= 148.6 PF)
200,795 10,096

2 Sieera, 2018, USA
DOE/NNSA/LLNL

IBM Power System S922LC, IBM POWER9
22C 3.1GHz, NVIDIA Volta GV100, Dual-rail
Mellanox EDR Infiniband

1,572,480 94,640 125,712 7,438

3 Sunway TaihuLight, 2016, China
National Supercomputing Center in Wuxi

Sunway MPP, Sunway SW26010 260C
1.45GHz, Sunway

10,649,600 93,015 125,436 15,371

4
Tianhe-2A, 2018, China
National Super Computer Center in
Guangzhou

TH-IVB-FEP Cluster, Intel Xeon E5-2692v2
12C 2.2GHz, TH Express-2, Matrix-2000

4,981,760 61,445 100,679 18,482

5 Frontera, 2019, USA
Texas Advanced Computing Center

Dell C6420, Xeon Platinum 8280 28c 2.7GHz,
Mellanox Infiniband HDR

448,448 23,516 38,746

6
Piz Daint, 2017, Switzerland
Swiss National Supercomputing Centre
(CSCS)

Cray XC50, Xeon E5-2690v3 12C 2.6GHz,
Aries interconnect , NVIDIA Tesla P100

387,872 21,230 27,154 2,384

7 Trinity, 2017, USA
DOE/NNSA/LANL/SNL

Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz,
Aries interconnect

979,072 20,159 41,461 7,578

8

ABCI (AI Bridging Cloud
Infrastructure), 2018, Japan
National Institute of Advanced Industrial
Science and Technology (AIST)

PRIMERGY CX2550 M4, Xeon Gold 6148
20C 2.4GHz, NVIDIA Tesla V100 SXM2,
Infiniband EDR

391,680 19,880 32,577 1,649

9 SuperMUC-NG, 2018, Germany
Leibniz Rechenzentrum

Lenovo, ThinkSystem SD650, Xeon Platinum
8174 24C 3.1GHz, Intel Omni-Path

305,856 19,477 26,874

10 Lassen, 2019, USA
DOE/NNSA/LLNL

IBM Power System S922LC, IBM POWER9
22C 3.1GHz, NVIDIA Volta V100, Dual-rail
Mellanox EDR Infiniband

288,288 18,200 23,047

15
Oakforest-PACS, 2016, Japan
Joint Center for Advanced High
Performance Computing

PRIMERGY CX1640 M1, Intel Xeon Phi 7250
68C 1.4GHz, Intel Omni-Path

556,104 13,556 24,913 2,719

25

http://www.hpcg-benchmark.org/

HPCG Ranking (November, 2019)
Computer Cores

HPL Rmax
(Pflop/s)

TOP500
Rank

HPCG
(Pflop/s)

1 Summit 2,414,592 148,600 1 2.926

2 Sierra 1,572,480 94.640 2 1.796

3 Trinity 979,072 20,159 7 0.546

4 ABCI 391,680 19,880 8 0.509

5 Piz Daint 387,872 21.230 6 0.497

6 Sunway TaihuLight 10,649,600 93.015 3 0.481

7 Nurion (KISTI, Korea) 570,020 13.929 14 0.391

8 Oakforest-PACS 556,104 13.555 15 0.385

9
Cori (NERSC/LBNL,
USA)

632,400 14.015 13 0.355

10
Tera-100-2 (CEA,
France)

622,336 11.965 17 0.334

26

Green 500 Ranking (November, 2019)

TOP 500
Rank

System Cores
HPL Rmax
(Pflop/s)

Power
(MW)

GFLOPS/W

1 159 A64FX Prototype (Fugaku), Japan 36,864 1,999.5 118 16.876

2 420 NA-1, PEZY, Japan 1,271,040 1,303.2 80 16.256

3 24 AiMOS, IBM, USA 130,000 8,045.0 510 15.771

4 373 Satori, IBM, USA 23,040 1,464.0 94 15.574

5 1 Summit, USA 2,414,592 148,600 10,096 14.719

6 8 ABCI, Japan 391,680 19,880 1,649 14.423

7 494 MareNostrum P9 CTE, Spain 18,360 1,145 81 14.131

8 23 TSUBAME 3.0, Japan 135,828 8,125 792 13.704

9 11 PANGEA III, France 291,024 17,860 1,367 13.065

10 2 Sierra, USA 1,572,480 94,640 7,438 12.723

13
June’18

Reedbush-L, U.Tokyo, Japan 16,640 806 79 10.167

19 Reedbush-H, U.Tokyo, Japan 17,760 802 94 8.576

http://www.top500.org/

Computational Science
The 3rd Pillar of Science

• Theoretical & Experimental Science
• Computational Science

– The 3rd Pillar of Science
– Simulations using Supercomputers

27

T
he

or
et

ic
al

E
xp

er
im

en
ta

l

C
om

pu
ta

tio
na

l

Intro

Methods for Scientific Computing
• Numerical solutions of PDE (Partial Diff. Equations)
• Grids, Meshes, Particles

– Large-Scale Linear Equations
– Finer meshes provide more accurate solutions

28Intro

3D Simulations for Earthquake
Generation Cycle

San Andreas Faults, CA, USA
Stress Accumulation at Transcurrent Plate Boundaries

Adaptive Mesh Refinement (AMR)

29Intro

Adaptive FEM: High -resolution needed at meshes with
large deformation (large accumulation)

30Intro

∆h=100km ∆h=50km ∆h=5km

[JAMSTEC]

Typhoon Simulations by FDM
Effect of Resolution

31Intro

Simulation of Geologic CO 2 Storage

[Dr. Hajime Yamamoto, Taisei]

32Intro

Simulation of Geologic CO 2 Storage

• International/Interdisciplinary
Collaborations
– Taisei (Science, Modeling)
– Lawrence Berkeley National Laboratory,

USA (Modeling)
– Information Technology Center, the

University of Tokyo (Algorithm, Software)
– JAMSTEC (Earth Simulator Center)

(Software, Hardware)
– NEC (Software, Hardware)

• 2010 Japan Geotechnical Society
(JGS) Award

33Intro

Simulation of Geologic CO 2 Storage
• Science

– Behavior of CO2 in supercritical state at deep reservoir
• PDE’s

– 3D Multiphase Flow (Liquid/Gas) + 3D Mass Transfer
• Method for Computation

– TOUGH2 code based on FVM, developed by Lawrence Berkeley
National Laboratory, USA

• More than 90% of computation time is spent for solving large-scale linear
equations with more than 107 unknowns

• Numerical Algorithm
– Fast algorithm for large-scale linear equations developed by

Information Technology Center, the University of Tokyo
• Supercomputer

– Earth Simulator II (NEX SX9, JAMSTEC, 130 TFLOPS)
– Oakleaf-FX (Fujitsu PRIMEHP FX10, U.Tokyo, 1.13 PFLOPS

34

Diffusion-Dissolution-Convection Process

35

• Buoyano scCO2 overrides onoo groundwaoer
• Dissoluoion of CO2 increases waoer densioy
• Denser fluid laid on lighoer fluid
• Rayleigh-Taylor insoabilioy invokes convecoive

mixing of groundwaoer

The mixing significanoly enhances ohe CO2

dissoluoion inoo groundwaoer, resuloing in

more soable soorage

Supercritical

CO2

Caprock (Low permeable seal)

Injection Well

Convective Mixing

Preliminary 2D simulaoion (Yamamooo eo al., GHGT11) [Dr. Hajime Yamamoto, Taisei]

Density
convections for

1,000 years:
Flow Model

36

• The meter-scale fingers gradually developed to larger ones in the field-scale model

• Huge number of time steps (> 105) were required to complete the 1,000-yrs simulation

• Onset time (10-20 yrs) is comparable to theoretical (linear stability analysis, 15.5yrs)

Reservoir Condition

• Permeability: 100 md

• Porosity: 20%

• Pressure: 3MPa

• Temperature: 100oC

• Salinity: 15wt%

Only the far side of the vertical
cross section passing through
the injection well is depicted.

[Dr. Hajime Yamamoto, Taisei]

Simulation of Geologic CO2 Storage
37

Fujitsu FX10 （Oakleaf-FX ），30M DOF: 2x-3x improvement

[Dr. Hajime Yamamoto, Taisei]

30 million DoF (10 million grids × 3 DoF/grid node)

0.1

1

10

100

1000

10000

10 100 1000 10000

C
a

lc
u

la
oi

o
n

 T
im

e
 (

se
c)

Number of Processors

0.1

1

10

100

1000

10000

10 100 1000 10000

C
a

lc
u

la
oi

o
n

 T
im

e
 (

se
c)

Number of Processors

TOUGH2-MP

on FX10

2-3 times speedup

Average time for solving

matrix for one time step

3D Multiphase Flow

(Liquid/Gas) + 3D

Mass Transfer

38

Motivation for Parallel Computing,
again

• Large-scale parallel computer enables fast computing in
large-scale scientific simulations with detailed models.
Computational science develops new frontiers of science
and engineering.

• Why parallel computing ?
– faster
– larger
– “larger” is more important from the view point of “new frontiers of

science & engineering”, but “faster” is also important.
– + more complicated
– Ideal: Scalable

• Weak Scaling, Strong Scaling

Intro

• Supercomputers and Computational Science
• Overview of the Class
• Future Issues

39Intro

Our Current Target: Multicore
Cluster

Multicore CPU’s are connected through network

40

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

Intro

• OpenMP
 Multithreading
 Intra Node (Intra CPU)
 Shared Memory

• MPI
 Message Passing
 Inter Node (Inter CPU)
 Distributed Memory

Memory Memory Memory Memory Memory

Our Current Target: Multicore
Cluster

Multicore CPU’s are connected through network

41

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

Intro

• OpenMP
 Multithreading
 Intra Node (Intra CPU)
 Shared Memory

• MPI
 Message Passing
 Inter Node (Inter CPU)
 Distributed Memory

Memory Memory Memory Memory Memory

Our Current Target: Multicore
Cluster

Multicore CPU’s are connected through network

42

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

Intro

• OpenMP
 Multithreading
 Intra Node (Intra CPU)
 Shared Memory

• MPI (after October)
 Message Passing
 Inter Node (Inter CPU)
 Distributed Memory

Memory Memory Memory Memory Memory

43

Flat MPI vs. Hybrid

Hybrid ：Hierarchal Structure

Flat-MPI：Each Core -> Independent

core
core
core
core

m
em

or
y core

core
core
core

m
em

or
y core

core
core
corem

em
or

y core
core
core
corem

em
or

y core
core
core
core

m
em

or
y core

core
core
core

m
em

or
y

m
em

or
y

m
em

or
y

m
em

or
y

core

core

core

core

core

core

core

core

core

core

core

core

Intro

• MPI only
• Intra/Inter

Node

• OpenMP
• MPI

Example of OpnMP/MPI Hybrid
Sending Messages to Neighboring Processes

MPI: Message Passing, OpenMP: Threading with Directives

Intro 44

!C
!C– SEND

do neib= 1, NEIBPETOT
II= (LEVEL-1)*NEIBPETOT
istart= STACK_EXPORT(II+neib-1)
inum = STACK_EXPORT(II+neib) - istart

!$omp parallel do
do k= istart+1, istart+inum

WS(k-NE0)= X(NOD_EXPORT(k))
enddo

call MPI_Isend (WS(istart+1-NE0), inum, MPI_DOUBLE_PRECISION, &
& NEIBPE(neib), 0, MPI_COMM_WORLD, &
& req1(neib), ierr)
enddo

45

Overview of This Class (1/3)
• https://nkl.cc.u-tokyo.ac.jp/20s/
• In order to make full use of modern supercomputer systems

with multicore/manycore architectures, hybrid parallel
programming with message-passing and multithreading is
essential.

• While MPI is widely used for message-passing, OpenMP for
CPU and OpenACC for GPU are the most popular ways for
multithreading on multicore/manycore clusters.

• In this class, we “parallelize” a finite -volume method
code with Krylov iterative solvers for Poisson’s
equation on Oakbridge -CX (OBCX) Supercomputer with
Intel Cascade Lake (CLX) at the University of Tokyo .
– Because of limitation of time, we are (mainly) focu sing on

multithreading by OpenMP.

OMP-1 46

Flat MPI vs. Hybrid

Hybrid ：Hierarchal Structure

Flat-MPI：Each PE -> Independent

core
core
core
core

m
em

or
y core

core
core
core

m
em

or
y core

core
core
corem

em
or

y core
core
core
corem

em
or

y core
core
core
core

m
em

or
y core

core
core
core

m
em

or
y

m
em

or
y

m
em

or
y

m
em

or
y

core

core

core

core

core

core

core

core

core

core

core

core

47

Overview of This Class (2/3)
• We “parallelize” a finite-volume method (FVM) code with

Krylov iterative solvers for Poisson’s equation.
• Derived linear equations are solved by ICCG (Conjugate

Gradient iterative solvers with Incomplete Cholesky
preconditioning), which is a widely-used method for
solving linear equations.

• Because ICCG includes “data dependency”, where
writing/reading data to/from memory could occur
simultaneously, parallelization using OpenMP is not
straight forward.

• We need certain kind of reordering in order to extract
parallelism.

48

Overview of This Class (3/3)
• Lectures and exercise on the following issues related to

OpenMP will be conducted:
– Overview of Finite-Volume Method (FVM)

– Kyrilov Iterative Method, Preconditioning

– Implementation of the Program

– Introduction to OpenMP

– Reordering/Coloring Method
– Parallel FVM by OpenMP

Intro-01

49

Date ID Title

Apr-08 (W) CS-01a Introduction-a

Apr-15 (W) CS-01b Introduction-b (Introduction-a and –b are same)

Apr-22 (W) CS-02 FVM (1/3)

Apr-29 (W) (no class) (National Holiday)

May-06 (W) (no class) (National Holiday)

May-13 (W) CS-03 FVM (2/3)

May-20 (W) CS-04 FVM (3/3) , OpenMP (1/3)

May-27 (W) CS-05 OpenMP (2/3), Login to OBCX

Jun-03 (W) CS-06 OpenMP (3/3)

Jun-10 (W) CS-07 Reordering (1/2)

Jun-17 (W) CS-08 Reordering (2/2)

Jun-24 (W) (canceled)

Jul-01 (W) CS-09 Tuning

Jul-08 (W) CS-10 Parallel Code by OpenMP (1/2)

Jul-15 (W) CS-11 Parallel Code by OpenMP (2/2)

Jul-22 (W) CS-12 Advanced Topics, Q/A

“Prerequisites”
• Fundamental physics and mathematics

– Linear algebra, analytics

• Experiences in fundamental numerical algorithms
– Gaussian Elimination, LU Factorization
– Jacobi/Gauss-Seidel/SOR Iterative Solvers
– Conjugate Gradient Method (CG)

• Experiences in programming by C or Fortran
• Experiences in Unix/Linux (vi or emacs)

– If you are not familiar with Unix/Linux (vi or emac s), please
try “Introduction Unix”, “Introduction emacs” in google .

• Experiences in Programming by C/C++/Fortran
• User account of ECCS2016 must be obtained (later)

– https://www.ecc.u-tokyo.ac.jp/en/newaccount.html

50

Strategy
• If you can develop programs by yourself, it is ideal... but

difficult.
– You can focuse on “reading”, not developing by yourself
– Programs are in C and Fortran

• Lectures are done by ...

• Lecture Materials
– available at NOON Moday through WEB.

• http://nkl.cc.u-tokyo.ac.jp/20s/

– NO hardcopy is provided

• Starting at 08:30
– You can enter the building/ZOOM classroom after 08:00

• In the Classroom …
– Taking seats from the front row
– Terminals must be shut-down after class

51

Intro-01

Grades

• 1 Report on programming

52

If you have any questions, please feel
free to contact me !

53

• Office: 3F Annex/Information Technology Center #36
– 情報基盤センター別館3F 36号室

• ext.: 22719
• e-mail: nakajima(at)cc.u-tokyo.ac.jp
• NO specific office hours, appointment by e -mail

• http://nkl.cc.u-tokyo.ac.jp/20s/

• http://nkl.cc.u-tokyo.ac.jp/seminars/multicore/ 日本語資料
（一部）

54

Keywords for OpenMP

• OpenMP
– Directive based, (seems to be) easy
– Many books

• Data Dependency
– Conflict of reading from/writing to memory
– Appropriate reordering of data is needed for “consistent”

parallel computing
– NO detailed information in OpenMP books: very complicated

5555

Some Technical Terms

• Processor, Core
– Processing Unit (H/W), Processor=Core for single-core proc’s

• Process
– Unit for MPI computation, nearly equal to “core”
– Each core (or processor) can host multiple processes (but not

efficient)

• PE (Processing Element)
– PE originally mean “processor”, but it is sometimes used as

“process” in this class. Moreover it means “domain” (next)
• In multicore proc’s: PE generally means “core”

• Domain
– domain=process (=PE), each of “MD” in “SPMD”, each data set
– Domain Decomposition

Preparation

• Windows
– Cygwin with gcc/gfortran and OpenSSH

• Please make sure to install gcc (C) or gfortran (Fortran) in “Devel”, and
OpenSSH in “Net”

– ParaView

• MacOS, UNIX/Linux
– ParaView

• Cygwin: https://www.cygwin.com/
• ParaView: http://www.paraview.org

56

• Supercomputers and Computational Science
• Overview of the Class
• Future Issues

57Intro

58

Technical Issues: Future of
Supercomputers

• Power Consumption
• Reliability, Fault Tolerance, Fault Resilience
• Scalability (Parallel Performance)

Key-Issues towards Appl./Algorithms
on Exa -Scale Systems

Jack Dongarra (ORNL/U. Tennessee) at ISC 2013

• Hybrid/Heterogeneous Architecture
– Multicore + GPU/Manycores (Intel MIC/Xeon Phi)

• Data Movement, Hierarchy of Memory

• Communication/Synchronization Reducing Algorithms
• Mixed Precision Computation
• Auto-Tuning/Self-Adapting
• Fault Resilient Algorithms
• Reproducibility of Results

59

Intro 59

Supercomputers with
Heterogeneous/Hybrid Nodes

60

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

Intro

