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Descriptions of the Class
• Technical & Scientific Computing I (4820-1027)

– 科学技術計算Ⅰ

– Department of Mathematical Informatics

• Special Lecture on Computational Alliance I(4810-1215)
– 計算科学アライアンス特別講義Ⅰ

– Department of Computer Science

• Multithreaded Parallel Computing (3747-110)
– スレッド並列コンピューティング
– Department of Electrical Engineering & Information Systems

• This class is certificated as the category “D” lecture of 
"the Computational Alliance, the University of Tokyo"
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• 2009-2014
– Introduction to FEM Programming 

• FEM: Finite-Element Method：有限要素法
– Summer (I) : FEM Programming for Solid Mechanics
– Winter    (II): Parallel FEM using MPI

• The 1st part (summer) is essential for the 2nd part (winter)

• Problems
– Many new (international) students in Winter, who did not take the 

1st part in Summer
– They are generally more diligent than Japanese stud ents

• 2015 
– Summer (I) : Multicore programming by OpenMP
– Winter (II): FEM + Parallel FEM by MPI/OpenMP for Heat Transfer

• Part I & II are independent (maybe...) 

• 2017
– Lectures are given in English
– Reedbush-U Supercomputer System

• 2020
– Oakbridge-CX Supercomputer System
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Motivation for Parallel Computing
(and this class)

• Large-scale parallel computer enables fast computing in 
large-scale scientific simulations with detailed models. 
Computational science develops new frontiers of science 
and engineering.

• Why parallel computing ?
– faster & larger
– “larger” is more important from the view point of “new frontiers of 

science & engineering”, but “faster” is also important.
– + more complicated
– Ideal: Scalable

• Solving Nx scale problem using Nx computational resources during same 
computation time (weak scaling)

• Solving a fix-sized problem using Nx computational resources in 1/N 
computation time (strong scaling)

Intro



Scientific Computing = SMASH
• You have to learn many things
• Collaboration/Co-Design needed

– They will be important for future career of 
each of you, as a scientist and/or an 
engineer.

– You have to communicate with people 
with different backgrounds

• I hope you can extend your 
knowledge/experiences a little bit from 
your original area through this class for 
your future career

– It is more difficult than communicating 
with foreign scientists from same area.

• (Q): Computer Science, 
Computational Science, or Numerical 
Algorithms ?
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This Class ...

• Target: Parallel FVM (Finite -
Volume Method) using OpenMP

• Science: 3D Poisson Equations
• Modeling: FVM
• Algorithm: Iterative Solvers etc.

• You have to know many components 
to learn FVM, although you have 
already learned each of these in 
undergraduate and high-school 
classes.
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Road to Programming for “Parallel” 
Scientific Computing

7Intro

Unix, Fortan, C etc.

Programming for Fundamental
Numerical Analysis

(e.g. Gauss-Seidel, RK etc.)

Programming for Real World 
Scientific Computing

(e.g. FEM, FDM)

Programming for Parallel 
Scientific Computing

(e.g. Parallel FEM/FDM)

Big gap here !!



Intro

The third step is important !

• How to parallelize applications ?
– How to extract parallelism ?
– If you understand methods, algorithms, 

and implementations of the original 
code, it’s easy.

– “Data-structure” is important

• How to understand the code ?
– Reading the application code !!
– It seems primitive, but very effective.
– In this class, “reading the source code” is encouraged.
– 3: FVM, 4: Parallel FVM
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1. Unix, Fortan, C etc.

2. Programming for Fundamental
Numerical Analysis

(e.g. Gauss-Seidel, RK etc.)

3. Programming for Real World 
Scientific Computing

(e.g. FEM, FDM)

4. Programming for Parallel 
Scientific Computing

(e.g. Parallel FEM/FDM)



Kengo Nakajima 中島研吾 (1/2)
• Current Position

– Professor, Supercomputing Research Division, Information 
Technology Center, The University of Tokyo（情報基盤センター）

• Department of Mathematical Informatics, Graduate School of Information 
Science & Engineering, The University of Tokyo（情報理工・数理情報学）

• Department of Electrical Engineering and Information Systems, Graduate 
School of Engineering, The University of Tokyo（工・電気系工学）

– Deputy Director, RIKEN R-CCS (Center for Computational 
Science) (Kobe) (20%) (2018.Apr.-)

• Research Interest
– High-Performance Computing
– Parallel Numerical Linear Algebra (Preconditioning)
– Parallel Programming Model
– Computational Mechanics, Computational Fluid Dynamics
– Adaptive Mesh Refinement, Parallel Visualization
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Kengo Nakajima (2/2)
• Education

– B.Eng (Aeronautics, The University of Tokyo, 1985)
– M.S. (Aerospace Engineering, University of Texas, 1993)
– Ph.D. (Quantum Engineering & System Sciences, The University 

of Tokyo, 2003)

• Professional
– Mitsubishi Research Institute, Inc. (1985-1999)
– Research Organization for Information Science & Technology 

(1999-2004)
– The University of Tokyo

• Department Earth & Planetary Science (2004-2008)
• Information Technology Center (2008-)

– JAMSTEC (2008-2011), part-time
– RIKEN (2009-2018), part-time
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• Supercomputers and Computational Science
• Overview of the Class
• Future Issues
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Computer & CPU

• Central Processing Unit （中央処理装置）：CPU
• CPU’s used in PC and Supercomputers are based on 

same architecture
• GHz: Clock Rate

– Frequency: Number of operations by CPU per second
• GHz -> 109 operations/sec

– Simultaneous 4-8 (or more) instructions per clock
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Multicore CPU
13

CPU

コア（Core）

CPU
Core

Core

CPU
Core

Core

Core

Core

Single Core
1 cores/CPU

Dual Core
2 cores/CPU

Quad Core
4 cores/CPU

• GPU: Manycore
– O(101)-O(102) cores

• More and more cores
– Parallel computing

• Core= Central 
part of CPU

• Multicore CPU’s 
with 4-8 cores 
are popular
– Low Power

Intro

• Oakbridge-CX: 28 cores x 2
– Intel Xeon Platinum 8280
– Cascade Lake, CLX
– Intel Xeon SP

• Scalable Processor

Intel® Xeon® 
Platinum 8280 

(Cascade Lake, CLX)
2.7GHz, 28-Cores

2.419 TFLOPS
Soc. #1: 28th-55th cores

Memory
96 GB

UPI
Intel® Xeon® 
Platinum 8280 

(Cascade Lake, CLX)
2.7GHz, 28-Cores

2.419 TFLOPS
Soc. #0: 0th-27th cores

DDR4
DDR4
DDR4
DDR4
DDR4
DDR4

2933 MHz×6ch
140.8 GB/sec

UPI

UPI

Ultra Path Interconnect
10.4 GT/sec ×3
= 124.8 GB/sec

DDR4
DDR4
DDR4
DDR4
DDR4
DDR4

2933 MHz×6ch
140.8 GB/sec

Memory
96 GB



GPU/Manycores
• GPU：Graphic Processing Unit

– GPGPU: General Purpose GPU
– O(102) cores
– High Memory Bandwidth
– (was) cheap
– NO stand-alone operations

• Host CPU needed

– Programming: CUDA, OpenACC

• Intel Xeon/Phi: Manycore CPU
– 60+ cores
– High Memory Bandwidth
– Unix, Fortran, C compiler 
– Host CPU NOT needed

• Needed in the 1st generation
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Parallel Supercomputers
Multicore CPU’s are connected through network 
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Supercomputers with 
Heterogeneous/Hybrid Nodes
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・・・・・・・・・
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Performance of Supercomputers
• Performance of CPU: Clock Rate
• FLOPS (Floating Point Operations per Second)

– Real Number

• Recent Multicore CPU
– 4-8 (or more) FLOPS per Clock
– (e.g.) Peak performance of a core with 3GHz 

• 3×109×4(or 8)=12(or 24)×109 FLOPS=12(or 24)GFLOPS

• 106 FLOPS= 1 Mega FLOPS = 1 MFLOPS
• 109 FLOPS= 1 Giga FLOPS = 1 GFLOPS
• 1012 FLOPS= 1 Tera FLOPS = 1 TFLOPS
• 1015 FLOPS= 1 Peta FLOPS = 1 PFLOPS
• 1018 FLOPS= 1 Exa FLOPS = 1 EFLOPS

Intro



18

Peak Performance of Oakbridge -CX
Intel Xeon Plarinum 8280 (Cascade Lake, Intel Xeon SP)

• 2.7 GHz
– 32 DP (Double Precision) FLOP operations per Clock

• Peak Performance (1 core)
– 2.7×32= 86.4 GFLOPS

• Peak Performance
– 1-Socket,  28 cores: 2,419.2 GFLOPS= 2.419 TFLOPS

– 2-Sockets, 56 cores:  4,838.4 GFLOPS= 4.838 TFLOPS  1-Node

Intro

Intel® Xeon® 
Platinum 8280 

(Cascade Lake, CLX)
2.7GHz, 28-Cores

2.419 TFLOPS
Soc. #1: 28th-55th cores

Memory
96 GB

UPI
Intel® Xeon® 
Platinum 8280 

(Cascade Lake, CLX)
2.7GHz, 28-Cores

2.419 TFLOPS
Soc. #0: 0th-27th cores

DDR4
DDR4
DDR4
DDR4
DDR4
DDR4

2933 MHz×6ch
140.8 GB/sec

UPI

UPI

Ultra Path Interconnect
10.4 GT/sec ×3
= 124.8 GB/sec

DDR4
DDR4
DDR4
DDR4
DDR4
DDR4

2933 MHz×6ch
140.8 GB/sec

Memory
96 GB
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TOP 500 List
http://www.top500.org/

• Ranking list of supercomputers in the world
• Performance (FLOPS rate) is measured by “Linpack” 

which solves large-scale linear equations.
– Since 1993
– Updated twice a year (International Conferences in June and 

November)

• Linpack
– Available in iPhone and Android

• Oakbridge-CX (OBCX) is 50th in the TOP 500 
(November 2019)

Intro
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Linpack on My iPhone XS
Intro

Normal Mode Low -Power Mode

Multithread
(parallel)

Single-thread
(serial)

• Performance of my 
iPhone XS is about 
20,000 Mflops

• Cray-1S
– Supercomputer of 

my company in 
1985 with 80 Mflops

– I do not know the 
price, but we had to 
pay 10 USD for 1 
sec. computing ! 

Cray-1S
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Linpack on My iPhone XS
Intro

Normal Mode Low -Power Mode

• You can change 
Problem size, and 
# of runs.
– “Size=500” means 

linear equations 
Ax=b with 500 
unknowns are 
solved 

• Actually, problem
size affects 
performance of 
computing so 
much !!
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• PFLOPS: Peta 
(=1015) Floating 
OPerations per 
Sec.

• Exa-FLOPS 
(=1018) will be 
attained in 2021 
…

Intro

http://www.top500.org/



Benchmarks
• TOP 500 (Linpack，HPL(High Performance Linpack))

– Direct Linear Solvers, FLOPS rate

– Regular Dense Matrices, Continuous Memory Access

– Computing Performance

• HPCG
– Preconditioned Iterative Solvers, FLOPS rate

– Irregular Sparse Matrices derived from FEM Applications 
with Many “0” Components

• Irregular/Random Memory Access,

• Closer to “Real” Applications than HPL

– Performance of Memory, Communications

• Green 500
– FLOPS/W rate for HPL (TOP500) 23
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http://www.top500.org/

54th TOP500 List (Nov., 2019)
Oakbridge -CX (OBCX) is 50th

Rmax: Performance of Linpack (TFLOPS)
Rpeak: Peak Performance (TFLOPS), 
Power: kW

Site Computer/Year Vendor Cores
Rmax

(TFLOPS)
Rpeak

(TFLOPS)
Power
(kW)

1 Summit, 2018, USA
DOE/SC/Oak Ridge National Laboratory

IBM Power System AC922, IBM POWER9 
22C 3.07GHz, NVIDIA Volta GV100, Dual-rail 
Mellanox EDR Infiniband

2,414,592
148,600

(= 148.6 PF)
200,795 10,096

2 Sieera, 2018, USA
DOE/NNSA/LLNL

IBM Power System S922LC, IBM POWER9 
22C 3.1GHz, NVIDIA Volta GV100, Dual-rail 
Mellanox EDR Infiniband

1,572,480 94,640 125,712 7,438

3 Sunway TaihuLight, 2016, China
National Supercomputing Center in Wuxi

Sunway MPP, Sunway SW26010 260C 
1.45GHz, Sunway

10,649,600 93,015 125,436 15,371

4
Tianhe-2A, 2018, China
National Super Computer Center in 
Guangzhou

TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 
12C 2.2GHz, TH Express-2, Matrix-2000

4,981,760 61,445 100,679 18,482

5 Frontera, 2019, USA
Texas Advanced Computing Center

Dell C6420, Xeon Platinum 8280 28c 2.7GHz, 
Mellanox Infiniband HDR

448,448 23,516 38,746

6
Piz Daint, 2017, Switzerland
Swiss National Supercomputing Centre 
(CSCS)

Cray XC50, Xeon E5-2690v3 12C 2.6GHz, 
Aries interconnect , NVIDIA Tesla P100

387,872 21,230 27,154 2,384

7 Trinity, 2017, USA
DOE/NNSA/LANL/SNL

Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz, 
Aries interconnect 

979,072 20,159 41,461 7,578

8

ABCI (AI Bridging Cloud 
Infrastructure), 2018, Japan
National Institute of Advanced Industrial 
Science and Technology (AIST)

PRIMERGY CX2550 M4, Xeon Gold 6148 
20C 2.4GHz, NVIDIA Tesla V100 SXM2, 
Infiniband EDR

391,680 19,880 32,577 1,649

9 SuperMUC-NG, 2018, Germany
Leibniz Rechenzentrum

Lenovo, ThinkSystem SD650, Xeon Platinum 
8174 24C 3.1GHz, Intel Omni-Path

305,856 19,477 26,874

10 Lassen, 2019, USA
DOE/NNSA/LLNL

IBM Power System S922LC, IBM POWER9 
22C 3.1GHz, NVIDIA Volta V100, Dual-rail 
Mellanox EDR Infiniband

288,288 18,200 23,047

15
Oakforest-PACS, 2016, Japan
Joint Center for Advanced High 
Performance Computing

PRIMERGY CX1640 M1, Intel Xeon Phi 7250 
68C 1.4GHz, Intel Omni-Path

556,104 13,556 24,913 2,719
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http://www.hpcg-benchmark.org/

HPCG Ranking (November, 2019)
Computer Cores

HPL Rmax
(Pflop/s)

TOP500 
Rank

HPCG 
(Pflop/s)

1 Summit 2,414,592 148,600 1 2.926

2 Sierra 1,572,480 94.640 2 1.796

3 Trinity 979,072 20,159 7 0.546

4 ABCI 391,680 19,880 8 0.509

5 Piz Daint 387,872 21.230 6 0.497

6 Sunway TaihuLight 10,649,600 93.015 3 0.481

7 Nurion (KISTI, Korea) 570,020 13.929 14 0.391

8 Oakforest-PACS 556,104 13.555 15 0.385

9
Cori (NERSC/LBNL, 
USA)

632,400 14.015 13 0.355

10
Tera-100-2 (CEA, 
France)

622,336 11.965 17 0.334
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Green 500 Ranking (November, 2019)

TOP 500
Rank

System Cores
HPL Rmax
(Pflop/s)

Power
(MW)

GFLOPS/W

1 159 A64FX Prototype (Fugaku), Japan 36,864 1,999.5 118 16.876

2 420 NA-1, PEZY, Japan 1,271,040 1,303.2 80 16.256

3 24 AiMOS, IBM, USA 130,000 8,045.0 510 15.771

4 373 Satori, IBM, USA 23,040 1,464.0 94 15.574

5 1 Summit, USA 2,414,592 148,600 10,096 14.719

6 8 ABCI, Japan 391,680 19,880 1,649 14.423

7 494 MareNostrum P9 CTE, Spain 18,360 1,145 81 14.131

8 23 TSUBAME 3.0, Japan 135,828 8,125 792 13.704

9 11 PANGEA III, France 291,024 17,860 1,367 13.065

10 2 Sierra, USA 1,572,480 94,640 7,438 12.723

13
June’18

Reedbush-L, U.Tokyo, Japan 16,640 806 79 10.167

19 Reedbush-H, U.Tokyo, Japan 17,760 802 94 8.576

http://www.top500.org/



Computational Science
The 3rd Pillar of Science

• Theoretical & Experimental Science
• Computational Science

– The 3rd Pillar of Science
– Simulations using Supercomputers
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Methods for Scientific Computing
• Numerical solutions of PDE (Partial Diff. Equations)
• Grids, Meshes, Particles

– Large-Scale Linear Equations
– Finer meshes provide more accurate solutions 

28Intro



3D Simulations for Earthquake 
Generation Cycle

San Andreas Faults, CA, USA
Stress Accumulation at Transcurrent Plate Boundaries

Adaptive Mesh Refinement (AMR)

29Intro



Adaptive FEM: High -resolution needed at meshes with 
large deformation (large accumulation)

30Intro



 

∆h=100km ∆h=50km ∆h=5km

[JAMSTEC]

Typhoon Simulations by FDM
Effect of Resolution

31Intro



Simulation of Geologic CO 2 Storage

[Dr. Hajime Yamamoto, Taisei]

32Intro



Simulation of Geologic CO 2 Storage

• International/Interdisciplinary 
Collaborations
– Taisei (Science, Modeling)
– Lawrence Berkeley National Laboratory, 

USA (Modeling)
– Information Technology Center, the 

University of Tokyo (Algorithm, Software)
– JAMSTEC (Earth Simulator Center) 

(Software, Hardware)
– NEC (Software, Hardware)

• 2010 Japan Geotechnical Society 
(JGS) Award

33Intro



Simulation of Geologic CO 2 Storage
• Science

– Behavior of CO2 in supercritical state at deep reservoir
• PDE’s

– 3D Multiphase Flow (Liquid/Gas) + 3D Mass Transfer
• Method for Computation

– TOUGH2 code based on FVM, developed by Lawrence Berkeley 
National Laboratory, USA

• More than 90% of computation time is spent for solving large-scale linear 
equations with more than 107 unknowns

• Numerical Algorithm
– Fast algorithm for large-scale linear equations developed by 

Information Technology Center, the University of Tokyo
• Supercomputer

– Earth Simulator II (NEX SX9, JAMSTEC, 130 TFLOPS)
– Oakleaf-FX (Fujitsu PRIMEHP FX10, U.Tokyo, 1.13 PFLOPS
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Diffusion-Dissolution-Convection Process

35

• Buoyano scCO2 overrides onoo groundwaoer
• Dissoluoion of CO2 increases waoer densioy
• Denser fluid laid on lighoer fluid
• Rayleigh-Taylor insoabilioy invokes convecoive 

mixing of groundwaoer

The mixing significanoly enhances ohe CO2

dissoluoion inoo groundwaoer, resuloing in

more soable soorage

Supercritical 

CO2

Caprock (Low permeable seal)

Injection Well

Convective Mixing

Preliminary 2D simulaoion (Yamamooo eo al., GHGT11) [Dr. Hajime Yamamoto, Taisei]



Density 
convections for 

1,000 years:
Flow Model

36

• The meter-scale fingers gradually developed to larger ones in the field-scale model

• Huge number of time steps (> 105) were required to complete the 1,000-yrs simulation

• Onset time (10-20 yrs) is comparable to theoretical (linear stability analysis, 15.5yrs)

Reservoir Condition

• Permeability: 100 md

• Porosity: 20% 

• Pressure: 3MPa

• Temperature: 100oC

• Salinity: 15wt% 

Only the far side of the vertical 
cross section passing through 
the injection well is depicted.

[Dr. Hajime Yamamoto, Taisei]



Simulation of Geologic CO2 Storage
37

Fujitsu FX10 （Oakleaf-FX ），30M DOF: 2x-3x improvement

[Dr. Hajime Yamamoto, Taisei]

30 million DoF (10 million grids × 3 DoF/grid node)
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Motivation for Parallel Computing, 
again

• Large-scale parallel computer enables fast computing in 
large-scale scientific simulations with detailed models. 
Computational science develops new frontiers of science 
and engineering.

• Why parallel computing ?
– faster
– larger
– “larger” is more important from the view point of “new frontiers of 

science & engineering”, but “faster” is also important.
– + more complicated
– Ideal: Scalable

• Weak Scaling, Strong Scaling

Intro



• Supercomputers and Computational Science
• Overview of the Class
• Future Issues

39Intro



Our Current Target: Multicore 
Cluster

Multicore CPU’s are connected through network 
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• OpenMP
 Multithreading
 Intra Node (Intra CPU)
 Shared Memory

• MPI
 Message Passing
 Inter Node (Inter CPU)
 Distributed Memory
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Our Current Target: Multicore 
Cluster

Multicore CPU’s are connected through network 
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Our Current Target: Multicore 
Cluster

Multicore CPU’s are connected through network 
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• OpenMP
 Multithreading
 Intra Node (Intra CPU)
 Shared Memory

• MPI (after October)
 Message Passing
 Inter Node (Inter CPU)
 Distributed Memory

Memory Memory Memory Memory Memory
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Flat MPI vs. Hybrid

Hybrid ：Hierarchal Structure

Flat-MPI：Each Core -> Independent
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• MPI only
• Intra/Inter 

Node

• OpenMP
• MPI



Example of OpnMP/MPI Hybrid
Sending Messages to Neighboring Processes

MPI: Message Passing, OpenMP: Threading with Directives

Intro 44

!C
!C– SEND

do neib= 1, NEIBPETOT
II= (LEVEL-1)*NEIBPETOT
istart= STACK_EXPORT(II+neib-1)
inum  = STACK_EXPORT(II+neib  ) - istart

!$omp parallel do
do k= istart+1, istart+inum

WS(k-NE0)= X(NOD_EXPORT(k))
enddo

call MPI_Isend (WS(istart+1-NE0), inum, MPI_DOUBLE_PRECISION,   &
&                  NEIBPE(neib), 0, MPI_COMM_WORLD,                &
&                  req1(neib), ierr)
enddo
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Overview of This Class (1/3)
• https://nkl.cc.u-tokyo.ac.jp/20s/
• In order to make full use of modern supercomputer systems 

with multicore/manycore architectures, hybrid parallel 
programming with message-passing and multithreading is 
essential. 

• While MPI is widely used for message-passing, OpenMP for 
CPU and OpenACC for GPU are the most popular ways for 
multithreading on multicore/manycore clusters. 

• In this class, we “parallelize” a finite -volume method 
code with Krylov iterative solvers for Poisson’s 
equation on Oakbridge -CX (OBCX) Supercomputer with 
Intel Cascade Lake (CLX) at the University of Tokyo .
– Because of limitation of time, we are (mainly) focu sing on 

multithreading by OpenMP. 
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Flat MPI vs. Hybrid

Hybrid ：Hierarchal Structure

Flat-MPI：Each PE -> Independent
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Overview of This Class (2/3)
• We “parallelize” a finite-volume method (FVM) code with 

Krylov iterative solvers for Poisson’s equation.
• Derived linear equations are solved by ICCG (Conjugate 

Gradient iterative solvers with Incomplete Cholesky 
preconditioning), which is a widely-used method for 
solving linear equations.

• Because ICCG includes “data dependency”, where 
writing/reading data to/from memory could occur 
simultaneously, parallelization using OpenMP is not 
straight forward. 

• We need certain kind of reordering in order to extract 
parallelism. 
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Overview of This Class (3/3)
• Lectures and exercise on the following issues related to 

OpenMP will be conducted:
– Overview of Finite-Volume Method (FVM)

– Kyrilov Iterative Method, Preconditioning

– Implementation of the Program

– Introduction to OpenMP

– Reordering/Coloring Method
– Parallel FVM by OpenMP



Intro-01
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Date ID Title 

Apr-08 (W) CS-01a Introduction-a

Apr-15 (W) CS-01b Introduction-b (Introduction-a and –b are same)

Apr-22 (W) CS-02 FVM (1/3)

Apr-29 (W) (no class) (National Holiday)

May-06 (W) (no class) (National Holiday)

May-13 (W) CS-03 FVM (2/3)

May-20 (W) CS-04 FVM (3/3) , OpenMP (1/3)

May-27 (W) CS-05 OpenMP (2/3), Login to OBCX

Jun-03 (W) CS-06 OpenMP (3/3)

Jun-10 (W) CS-07 Reordering (1/2)

Jun-17 (W) CS-08 Reordering (2/2)

Jun-24 (W) (canceled)

Jul-01 (W) CS-09 Tuning

Jul-08 (W) CS-10 Parallel Code by OpenMP (1/2)

Jul-15 (W) CS-11 Parallel Code by OpenMP (2/2)

Jul-22   (W) CS-12 Advanced Topics, Q/A



“Prerequisites”
• Fundamental physics and mathematics

– Linear algebra, analytics

• Experiences in fundamental numerical algorithms
– Gaussian Elimination, LU Factorization
– Jacobi/Gauss-Seidel/SOR Iterative Solvers
– Conjugate Gradient Method (CG)

• Experiences in programming by C or Fortran
• Experiences in Unix/Linux (vi or emacs)

– If you are not familiar with Unix/Linux (vi or emac s), please 
try “Introduction Unix”, “Introduction emacs” in google .

• Experiences in Programming by C/C++/Fortran
• User account of ECCS2016 must be obtained (later)

– https://www.ecc.u-tokyo.ac.jp/en/newaccount.html
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Strategy
• If you can develop programs by yourself, it is ideal... but 

difficult.
– You can focuse on “reading”, not developing by yourself
– Programs are in C and Fortran

• Lectures are done by ...

• Lecture Materials
– available at NOON Moday through WEB.

• http://nkl.cc.u-tokyo.ac.jp/20s/

– NO hardcopy is provided

• Starting at 08:30
– You can enter the building/ZOOM classroom after 08:00

• In the Classroom …
– Taking seats from the front row 
– Terminals must be shut-down after class 
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Grades

• 1 Report on programming
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If you have any questions, please feel 
free to contact me !
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• Office: 3F Annex/Information Technology Center #36
– 情報基盤センター別館3F 36号室

• ext.: 22719
• e-mail: nakajima(at)cc.u-tokyo.ac.jp
• NO specific office hours, appointment by e -mail

• http://nkl.cc.u-tokyo.ac.jp/20s/

• http://nkl.cc.u-tokyo.ac.jp/seminars/multicore/ 日本語資料
（一部）
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Keywords for OpenMP

• OpenMP
– Directive based, (seems to be) easy
– Many books

• Data Dependency
– Conflict of reading from/writing to memory
– Appropriate reordering of data is needed for “consistent” 

parallel computing
– NO detailed information in OpenMP books: very complicated
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Some Technical Terms

• Processor, Core
– Processing Unit (H/W), Processor=Core for single-core proc’s

• Process
– Unit for MPI computation, nearly equal to “core”
– Each core (or processor) can host multiple processes (but not 

efficient)

• PE (Processing Element)
– PE originally mean “processor”, but it is sometimes  used as 

“process” in this class. Moreover it means “domain” (next)
• In multicore proc’s: PE generally means “core”

• Domain
– domain=process (=PE), each of “MD” in “SPMD”, each data set
– Domain Decomposition



Preparation

• Windows 
– Cygwin with gcc/gfortran and OpenSSH

• Please make sure to install gcc (C) or gfortran (Fortran) in “Devel”, and 
OpenSSH in “Net”

– ParaView

• MacOS, UNIX/Linux
– ParaView

• Cygwin: https://www.cygwin.com/
• ParaView: http://www.paraview.org
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• Supercomputers and Computational Science
• Overview of the Class
• Future Issues

57Intro
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Technical Issues: Future of 
Supercomputers

• Power Consumption
• Reliability, Fault Tolerance, Fault Resilience
• Scalability (Parallel Performance)



Key-Issues towards Appl./Algorithms 
on Exa -Scale Systems

Jack Dongarra (ORNL/U. Tennessee) at ISC 2013

• Hybrid/Heterogeneous Architecture
– Multicore + GPU/Manycores (Intel MIC/Xeon Phi)

• Data Movement, Hierarchy of Memory

• Communication/Synchronization Reducing Algorithms
• Mixed Precision Computation
• Auto-Tuning/Self-Adapting
• Fault Resilient Algorithms
• Reproducibility of Results 
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Supercomputers with 
Heterogeneous/Hybrid Nodes
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