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Intro-pFEM

Parallel Computing

e Faster, Larger & More Complicated

o Scalabllity

— Solving N* scale problem using N* computational
resources during same computation time
 for large-scale problems: Weak Scaling
e e.g. CG solver: more iterations needed for larger problems

— Solving a problem using N* computational resources
during 1/N computation time
o for faster computation: Strong Scaling
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What is Parallel Computing ? (1/2)

* to solve larger problems faster

Homogeneous/Heterogeneous
Porous Media

Lawrence Livermore National Laboratory

very fine meshes are

A 4

Homogeneous Heterogeneous required for Simqlations of
heterogeneous field.



Intro-pFEM

What is Parallel Computing ? (2/2)

« PC with 1GB memory : 1M meshes are the limit for FEM

— Southwest Japan with 1,000km x 1,000km x 100km in 1km mesh
-> 108 meshes

e Large Data -> Domain Decomposition -> Local Operation
 Inter-Domain Communication for Global Operation

partitioning
Data Data
Large-Scale Communication
Data Local | Locd
Data Data L ocal Local
Data Data
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What iIs Communication ?

o Parallel Computing -> Local Operations

« Communications are required in Global Operations
for Consistency.
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Large Scale Data -> partitioned into Distributed Local Data Sets.

FEM code can assemble coefficient matrix for each local data set :
this part could be completely local, same as serial operations

Global Operations & Communications happen only in Linear Solvers
dot products, matrix-vector multiply, preconditioning

Operations In Parallel FEM
SPMD: Single -Program Multiple -Data
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PE: Processing Element You understand 90% MPI, if
Processor, Domain, Process SPMD you understand this figure.

npirun -np M <Progranp

[ I

PE #0 PE #1 PE #2 PE #M-1

Program Program

Data #0 Data #1

Each process does same operation for different data

Large-scale data is decomposed, and each part is computed by each process
It is ideal that parallel program is not different from serial one except communication.

Program 00000 Program

Data #2 Data #M-1
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Parallel FEM Procedures

 Design on “Local Data Structure” Is important
— for SPMD-type operations in the previous page

e Matrix Generation
 Preconditioned Iterative Solvers for Linear Equations
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Bi-Linear Square Elements

Values are defined on each node
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divide into two domains by
“node-based” manner, where
number of “nodes (vertices)” are
balanced.

Local information is not enough
for matrix assembling.

Information of overlapped
elements and connected nodes
are required for matrix
assembling on boundary nodes.
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Local Data of Parallel FEM

e Node-based partitioning for preconditioned iterative solvers

e Local data includes information for :
e Nodes originally assigned to the partition/PE
e Elements which include the nodes (originally assigned to the Partition/PE)

e All nodes which form the elements but out of the partition

e Nodes are classified into the following 3 categories from the

viewpoint of the message passing

e Internal nodes originally assigned nodes

e External nodes in the overlapped elements but out of the partition

e Boundary nodes external nodes of other partition (part of internal nodes)

e Communication table between partitions

e NO global information required except partition-to-partition
connectivity



Node -based Partitioning
Internal nodes - elements - external nodes
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Node -based Partitioning
Internal nodes - elements - external nodes

®Partitioned nodes themselves (Internal Nodes) N M

®Elements which include Internal Nodes REZSHER

®External Nodes included in the Elements 4} &
In overlapped region among partitions.

®Info of External Nodes are required for completely local

element—based operations on each processor.
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We do not need communication

during matrix assemble !!

®Partitioned nodes themselves (Internal Nodes)
®Elements which include Internal Nodes

®External Nodes included in the Elements
In overlapped region among partitions.

®Info of External Nodes are required for completely local
element—based operations on each processor.
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Parallel Computing in FEM
SPMD: Single -Program Multiple -Data

FEM code Linear Solvers

Local Data

FEM code Linear Solvers

Local Data

FEM code

Linear Solvers

Local Data

Local Data FEM code

Linear Solvers
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Parallel Computing in FEM S
SPMD: Single -Program Multiple -Data sess

Linear Solvers

FEM code
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FEM code Linear Solvers

Linear Solvers

Linear Solvers
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FEM code
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Parallel Computing in FEM i
SPMD: Single -Program Multiple -Data Sialee
%4 :13 :4 :5 | ocal Data FEM code Linear Solvers

FEM code Linear Solvers

Local Data

Linear Solvers

Local Data FEM code

Local Data FEM code

Linear Solvers
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Parallel Computing in FEM
SPMD: Single -Program Multiple -Data

FEM code Linear Solvers

FEM code Linear Solvers

Linear Solvers

FEM code

FEM code

Linear Solvers

17

Intro-pFEM




Parallel Computing in FEM
SPMD: Single -Program Multiple -Data

FEM code Linear Solvers

Local Data

Local Data FEM code

Linear Solvers

Local Data FEM code Linear Solvers

Local Data

MPI
18
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What iIs Communications ?

e to get information of “external nodes” from external
partitions (local data)

e “Communication tables” contain the information

Intro-pFEM
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1D FEM:

12 nodes/11 elem’s/3 domains

20
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1D FEM: 12 nodes/11 elem’s /3 domains

poy::L

T3 : Tri-Diagonal Matrix
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# “Internal Nodes” should be balanced
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Matrices are incomplete !

#0
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#2
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Connected Elements + External Nodes
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1D FEM: 12 nodes/11 elem’s/3 domains
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1D FEM: 12 nodes/11 elem’s/3 domains
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PE: Processing Element You understand 90% MPI, if
Processor, Domain, Process SPMD you understand this figure.

npirun -np M <Progranp

[ I

PE #0 PE #1 PE #2 PE #M-1

Program Program

Data #0 Data #1

Each process does same operation for different data

Large-scale data is decomposed, and each part is computed by each process
It is ideal that parallel program is not different from serial one except communication.

Program 00000 Program

Data #2 Data #M-1
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Local Numbering for SPMD

Numbering of internal nodes is 1-N (0-N-1), same operations
In serial program can be applied. Numbering of external
nodes: N+1, N+2 (N,N+1)

v
00000
000000
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1D FEM: 12 nodes/11 elem’s/3 domains

Integration on each element, element matrix -> global matrix
Operations can be done by info. of internal/external nodes
and elements which include these nodes

© 6-0-0-0-0
o e

#1




Because the matrix Is sparse, the union of
the local matrices forms the global matrix !
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Finite Element Procedures

 [nitialization
— Control Data
— Node, Connectivity of Elements (N: Node#, NE: Elem#)
— Initialization of Arrays (Global/Element Matrices)
— Element-Global Matrix Mapping (Index, ltem)

e Generation of Matrix

— Element-by-Element Operations (do icel= 1, NE)
e Element matrices
o Accumulation to global matrix

— Boundary Conditions

e Linear Solver
— Conjugate Gradient Method

31
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Preconditioned CG Solver

e Preconditioning
Diagonal Scaling/Point Jacobi

e Parallel operations are

Compute r (9= b-[ A] x(0
for =1, 2, ...
solve [Mz(-D= (-1
p = r(i-1 z(i-1

if =1 . .
p® =7 © reqUIred N
else_ Dot Products
Bii = Pi1 / Piz e
pO =z D+ B, plD Mat-Vec. Multiplication
endit | SpMV: Sparse Mat-Vec. Mult.
q('): [ Al p(') - _
o, = p., /pigl) D O 0O O
x® =x (0 + o pO
r@ =r (1) . a; g® 0 D2 0 0
check convergence | 1| [I\/I] = ..
enc 0 O D O
0 0 0 Dy
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Preconditioning, DAXPY

Local Operations by Only Internal Points: Parallel
Processing is possible

1
1 2
IC 2
1G— {z}= [Minv] {r} 3
3 4
doi=1, N
W(i,Z)= W(i,DD) * W(i,R) 4
enddo 1
5
I 6 2
IC— {x}= {x} + ALPHA*{p} DAXPY: double a{x} plus {y} 3
IC  {r}= {r] - ALPHAx{q) 7
do i=1, N 8 4
PHI (i)= PHI (i) + ALPHA * W(i,P)
W(i R)= W(i,R) — ALPHA * W(i,Q) 9 1
enddo
10 5
11 3
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Dot Products

Global Summation needed: Communication.?
1
L 2
I 2 3
IC—— ALPHA= RHO / {p} {a} 3
C1= 0.d0 .
doi=1, N 4
C1=C1 + W(i,P)=W(i, Q) 1
enddo 5
ALPHA= RHO / Cf 2
6
v 3
3 4
9 1
10 2
11 3
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P#0 | A0 |BO|CO|DO P#0 | op.AO-A3 |0p.B0-B3 |0p.CO-C3|0p.DO-D3

MPI_REDUCE ~ =inos st

P#2 |A2|B2|C2|D2
P#3 | A3|B3|C3|D3 P#3

 Reduces values on all processes to a single value
— Summation, Product, Max, Min etc.

e call MPI _REDUCE
(sendbuf, recvbuf, count, dat at ype, op, root, comm i err)

— sendbuf choice | starting address of send buffer
— recvbuf choice O starting address receive buffer
type is defined by ” dat at ype”

— count I I number of elements in send/receive buffer

— dat atype | I data type of elements of send/recive buffer
FORTRAN MPI_INTEGER, MPI_REAL, MPI_DOUBLE_PRECISIO N, MPI_CHARACTER etc.
C MPI_INT, MPI_FLOAT, MPI_DOUBLE, MPI_CHAR e tc

- op I I reduce operation

MPI_MAX, MPI_MIN, MPI _SUM MPI_PROD, MPI_LAND, MPI_BAND etc
Users can define operations by MPI _OP_CREATE

ot I I rank of root process
I I communicator

I (@) completion code
Fortran

|
—
o

;

|
D
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Preconditioned CG Solver

e Preconditioning
Diagonal Scaling/Point Jacobi

e Parallel operations are

Compute r (9= b-[ A] x(0
for =1, 2, ...
solve [Mz(-D= (-1
p = r(i-1 z(i-1

if =1 . .
p® =7 © reqUIred N
else_ Dot Products
Bii = Pi1 / Piz e
pO =z D+ B, plD Mat-Vec. Multiplication
endit | SpMV: Sparse Mat-Vec. Mult.
q('): [ Al p(') - _
o, = p., /pigl) D O 0O O
x® =x (0 + o pO
r@ =r (1) . a; g® 0 D2 0 0
check convergence | 1| [I\/I] = ..
enc 0 O D O
0 0 0 Dy
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Matrix-Vector Products
Values at External Points: P-to-P Communication

IC
1G— {a}= [A] {p}

do i=1, N
W(i,Q = DIAGC(i)*W(i,P)
do j= INDEX(i-1)+1, INDEX(i)
W(i,Q = W(@i,Q + AMAT(j)*=W(ITEM(j), P)
enddo
enddo

0000090
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Mat-Vec Products: Local Op. Possible

1 1
2 2
3 3
4 4
5 5
6 B 6
7 - 7
8 8
9 9
10 10
11 11
12 12
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Mat-Vec Products: Local Op. Possible
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Mat-Vec Products: Local Op. Possible

AW DN
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10

11

12

A TOWOW|IDN|PP

| N | O | O

10

11

12

40



Mat-Vec Products: Local Op. #0

e,

1

2
3
4

a | b 1 W IDN|PF




Mat-Vec Products: Local Op. #1

1 1
2 B 2

3 - 3

4 4

1 1

2 B 2

3 - 3

4 4

5

6 00060600




Mat-Vec Products: Local Op. #2

1 1
2 B 2
3 - 3
4 4
1 1
2 B 2
3 - 3
4 4
5
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1D FEM: 12 nodes/11 elem’s/3 domains

44
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1D FEM: 12 nodes/11 elem’s/3 domains

Local ID: Starting from 1 for node and elem at each domain

45
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1D FEM: 12 nodes/11 elem’s /3 domains

Internal/External/Boundary Nodes
Boundary Nodes: Part of Internal Nodes, and External Nodes
of Other Domains

» @-0-0-0.0

o

#197979797???
External Nodes —0—0—100—0
@ 2 © 2 © 1 W W3

° Boundary Nodes
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What Is Peer -to-Peer Communication ?

e Collective Communication
— MPI_Reduce, MPI_Scatter/Gather etc.
— Communications with all processes in the communicator

— Application Area
« BEM, Spectral Method, MD: global interactions are considered
e Dot products, MAX/MIN: Global Summation & Comparison

e Peer-toPeer/Point-to-Point

47

— MPI_Send, MPIl_Recv |
— Communication with limited = 000000
processes ; i _L
« Neighbors oot

— Application Area
« FEM, FDM: Localized Method
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MPI_ISEND

« Begins a non-blocking send

— Send the contents of sending buffer (starting from sendbuf , number of messages: count )
to dest witht ag .

— Contents of sending buffer cannot be modified before calling corresponding MPI _Wai tal | .

« call MPI _| SEND
( sendbuf , count , dat at ype, dest, tag, comm request, ierr)

— sendbuf choice | starting address of sending buffer

— count I I number of elements sent to each process
— datatype | I data type of elements of sending buffer

— dest I I rank of destination

— tag I I message tag

This integer can be used by the application to distinguish
messages. Communication occurs if tag’'s  of
MPI_Isend and MPI_lrecv are matched.

Usually tag is set to be “0” (in this class),
— comm I I communicator
communication request array used in MP1_Waitall
rr I O completion code

(@)
c
M
0]
—
@)
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MPI|_IRECV

e Begins a non-blocking receive
— Recelving the contents of receiving buffer (starting from r ecvbuf , number of messages:
count) from sour ce with t ag .
— Contents of receiving buffer cannot be used before calling corresponding MPI _Wai t al | .

e call Ml _|I RECV
(recvbuf, count, dat at ype, dest, tag, comm request, i1err)

— recvbuf choice | starting address of receiving buffer

— count I I number of elements in receiving buffer

— datatype | I data type of elements of receiving buffer

— source I I rank of source

— tag I I message tag
This integer can be used by the application to distinguish
messages. Communication occurs if tag’'s  of
MPI_Isend and MPI_Irecv are matched.
Usually tag is set to be “0” (in this class),

— comm I I communicator

guest | O communication request used in MPI1_Waitall

e
err I O completion code
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MPI WAITALL

« MPI _Waitall blocks until all comm’s, associated with r equest in the array,
complete. It is used for synchronizing MPl _| send and MPI _I r ecv in this class.

o At sending phase, contents of sending buffer cannot be modified before calling
corresponding MPl Wi t al | . At receiving phase, contents of receiving buffer

cannot be used before calling corresponding MPI _Wai t al | .

« MPI Isendand Ml | recv can be synchronized simultaneously with a single
MPI Wi tall ifitis consitent.
— Same r equest should be used in MPl _Isend and MPl _Irecv.

o Its operation is similar to that of MPl _Barri er but, MPl _Wai tal | can not be
replaced by MPI _Barri er.

— Possible troubles using MPlI _Barri er instead of MPl _Wai t al | : Contents of r equest and
st at us are not updated properly, very slow operations etc.

e call MPI _WAITALL (count,request,status,ierr)

— count I I number of processes to be synchronized
— request | /O comm. request used in MPI_Waitall (array size: count )
— status I @) array of status objects

MPI_STATUS_SIZE: defined in ‘mpif.h’, ‘mpi.h’
— ierr I (@) completion code
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