Introduction to Parallel FEM In
Fortran
Parallel Data Structure

Kengo Nakajima

Information Technology Center
The University of Tokyo

Intro-pFEM

Parallel Computing

e Faster, Larger & More Complicated

o Scalabllity

— Solving N* scale problem using N* computational
resources during same computation time
 for large-scale problems: Weak Scaling
e e.g. CG solver: more iterations needed for larger problems

— Solving a problem using N* computational resources
during 1/N computation time
o for faster computation: Strong Scaling

Intro-pFEM

What is Parallel Computing ? (1/2)

* to solve larger problems faster

Homogeneous/Heterogeneous
Porous Media

Lawrence Livermore National Laboratory

very fine meshes are

A 4

Homogeneous Heterogeneous required for Simqlations of
heterogeneous field.

Intro-pFEM

What is Parallel Computing ? (2/2)

« PC with 1GB memory : 1M meshes are the limit for FEM

— Southwest Japan with 1,000km x 1,000km x 100km in 1km mesh
-> 108 meshes

e Large Data -> Domain Decomposition -> Local Operation
 Inter-Domain Communication for Global Operation

partitioning
Data Data
Large-Scale Communication
Data Local | Locd
Data Data L ocal Local
Data Data

Intro-pFEM

What iIs Communication ?

o Parallel Computing -> Local Operations

« Communications are required in Global Operations
for Consistency.

Intro pFEM

Large Scale Data -> partitioned into Distributed Local Data Sets.

FEM code can assemble coefficient matrix for each local data set :
this part could be completely local, same as serial operations

Global Operations & Communications happen only in Linear Solvers
dot products, matrix-vector multiply, preconditioning

Operations In Parallel FEM
SPMD: Single -Program Multiple -Data

— =
Local Data
— =
Local Data
— D

Local Data

—

—

—

_—

Local Data

—

—

MPI Programming 7

PE: Processing Element You understand 90% MPI, if
Processor, Domain, Process SPMD you understand this figure.

npirun -np M <Progranp

[I

PE #0 PE #1 PE #2 PE #M-1

Program Program

Data #0 Data #1

Each process does same operation for different data

Large-scale data is decomposed, and each part is computed by each process
It is ideal that parallel program is not different from serial one except communication.

Program 00000 Program

Data #2 Data #M-1

Intro-pFEM

Parallel FEM Procedures

 Design on “Local Data Structure” Is important
— for SPMD-type operations in the previous page

e Matrix Generation
 Preconditioned Iterative Solvers for Linear Equations

Intro pFEM

Bi-Linear Square Elements

Values are defined on each node

©

(=

6

2

|G

O

(=

|G

8

divide into two domains by
“node-based” manner, where
number of “nodes (vertices)” are
balanced.

Local information is not enough
for matrix assembling.

Information of overlapped
elements and connected nodes
are required for matrix
assembling on boundary nodes.

Intro pFEM

Local Data of Parallel FEM

e Node-based partitioning for preconditioned iterative solvers

e Local data includes information for :
e Nodes originally assigned to the partition/PE
e Elements which include the nodes (originally assigned to the Partition/PE)

e All nodes which form the elements but out of the partition

e Nodes are classified into the following 3 categories from the

viewpoint of the message passing

e Internal nodes originally assigned nodes

e External nodes in the overlapped elements but out of the partition

e Boundary nodes external nodes of other partition (part of internal nodes)

e Communication table between partitions

e NO global information required except partition-to-partition
connectivity

Node -based Partitioning
Internal nodes - elements - external nodes

PE#1 PE#0
21 22 23 24 25
Q O Q O o
17 18 19
160 O O Q © 20
12 3 14
K ® O O O 15
7 8 9
6 @ ® O O O 10
@ @ O O O
1 2 3 4 5
PE#3 PE#2

Intro pFEM

PE#1
4 5 6 12
O—O0—O0——O0
1 O—O—0O——=O011
2 3
e—0 —O—O
1 8 9 10
110 12
O——0O0—"=0
5 @ 06 O 9 e—O—O0—O
3@—9@ —0O 38 8 @—O—0O—0¢6
4 4 5
e—@ O e—O—0O0——-=0O
1 2 1 1 1 2 3
PE#3 PE#2

11

Node -based Partitioning
Internal nodes - elements - external nodes

®Partitioned nodes themselves (Internal Nodes) N M

®Elements which include Internal Nodes REZSHER

®External Nodes included in the Elements 4} &
In overlapped region among partitions.

®Info of External Nodes are required for completely local

element—based operations on each processor.

15 6 V4 PER PERO -
O—0—0 2z alle =
o N I . ' ‘1
2 3
17 18 19
160 O O G 20 O
O O O O 7 8 9
.l./-l- 13 4- 5 “. '12 (13 14 - 1 10 12
I N\ C
@ N N O f@—@ 5w 50—@_—07
X0 . § 2 3
z:.——*b;—()s
~ ~ r T =mlls £ 5
’ O \.) 1 2 3 4 5
1 2 7
8 9 11 12 e PERZ PELI

Intro pFEM

12

We do not need communication

during matrix assemble !!

®Partitioned nodes themselves (Internal Nodes)
®Elements which include Internal Nodes

®External Nodes included in the Elements
In overlapped region among partitions.

®Info of External Nodes are required for completely local
element—based operations on each processor.

15 6 / PER PERO 5 ¢
S N | .
1 1"
\/ \/(\, G T | PEE 2 3 14 |13 | s
C\ C) - A {J) . : \; O . : S 3
/N /\ /J& /\ /‘ /\ 5 12 13 14 o W Az l L
ng @ O O Q15 - < - C ' O
.;)){)i >>3 Y o Hot &S SO—9 009 0 3 1 12
o—9—0s 8 &
./ G e Gl o—eoo—o—0) s . Is
4 Y _) 1 2 3 a - Il
8 9 11 12 PERS PER2 1 P_én = 7 'Eé -

13

Parallel Computing in FEM
SPMD: Single -Program Multiple -Data

FEM code Linear Solvers

Local Data

FEM code Linear Solvers

Local Data

FEM code

Linear Solvers

Local Data

Local Data FEM code

Linear Solvers

Intro-pFEM 14

Parallel Computing in FEM S
SPMD: Single -Program Multiple -Data sess

Linear Solvers

FEM code

o....!
D A

awcTvo

FEM code Linear Solvers

Linear Solvers

Linear Solvers

Intro-pFEM 15

FEM code

-EE-'-‘ "
Bis==
IIII...._.I

FEM code

Parallel Computing in FEM i
SPMD: Single -Program Multiple -Data Sialee
%4 :13 :4 :5 | ocal Data FEM code Linear Solvers

FEM code Linear Solvers

Local Data

Linear Solvers

Local Data FEM code

Local Data FEM code

Linear Solvers

16

Intro-pFEM

Parallel Computing in FEM
SPMD: Single -Program Multiple -Data

FEM code Linear Solvers

FEM code Linear Solvers

Linear Solvers

FEM code

FEM code

Linear Solvers

17

Intro-pFEM

Parallel Computing in FEM
SPMD: Single -Program Multiple -Data

FEM code Linear Solvers

Local Data

Local Data FEM code

Linear Solvers

Local Data FEM code Linear Solvers

Local Data

MPI
18

Intro-pFEM

What iIs Communications ?

e to get information of “external nodes” from external
partitions (local data)

e “Communication tables” contain the information

Intro-pFEM

19

Intro-pFEM

1D FEM:

12 nodes/11 elem’s/3 domains

20

Intro-pFEM

1D FEM: 12 nodes/11 elem’s /3 domains

poy::L

T3 : Tri-Diagonal Matrix

1

O© | 00N O | 01| bW DN

10

11

12

21

Intro-pFEM

22

“Internal Nodes” should be balanced

O | N o ok | W | DN |

10

11

12

#0

#1

#2

Intro-pFEM

Matrices are incomplete !

#0

#1

#2

Intro-pFEM

Connected Elements + External Nodes

1
2
2
4

[e¢] I~ lop} O [
© 0o ~ o ol BN

24

#0

#1

#2

Intro-pFEM

1D FEM: 12 nodes/11 elem’s/3 domains

1
2
2
4

[o¢] I~ [op} O [
© oo ~ (o)) ol g

© | 0| N O | ok, | W |DN|PF

=
o

=
=

=
N

25

#0

#1

#2

Intro-pFEM

1D FEM: 12 nodes/11 elem’s/3 domains

26

MPI Programming 27

PE: Processing Element You understand 90% MPI, if
Processor, Domain, Process SPMD you understand this figure.

npirun -np M <Progranp

[I

PE #0 PE #1 PE #2 PE #M-1

Program Program

Data #0 Data #1

Each process does same operation for different data

Large-scale data is decomposed, and each part is computed by each process
It is ideal that parallel program is not different from serial one except communication.

Program 00000 Program

Data #2 Data #M-1

Intro-pFEM 28

Local Numbering for SPMD

Numbering of internal nodes is 1-N (0-N-1), same operations
In serial program can be applied. Numbering of external
nodes: N+1, N+2 (N,N+1)

v
00000
000000

Intro-pFEM 29

1D FEM: 12 nodes/11 elem’s/3 domains

Integration on each element, element matrix -> global matrix
Operations can be done by info. of internal/external nodes
and elements which include these nodes

© 6-0-0-0-0
o e

#1

Because the matrix Is sparse, the union of
the local matrices forms the global matrix !

#0

1
2
2
4

#1

|co I~ (o)) [S2 I
) —)—C)—C)—E
© 0 N O | 0| B~ | W |DN |k

=
o

#2

=
=

=
N

Intro-pFEM

Finite Element Procedures

 [nitialization
— Control Data
— Node, Connectivity of Elements (N: Node#, NE: Elem#)
— Initialization of Arrays (Global/Element Matrices)
— Element-Global Matrix Mapping (Index, ltem)

e Generation of Matrix

— Element-by-Element Operations (do icel= 1, NE)
e Element matrices
o Accumulation to global matrix

— Boundary Conditions

e Linear Solver
— Conjugate Gradient Method

31

Intro-pFEM

32

Preconditioned CG Solver

e Preconditioning
Diagonal Scaling/Point Jacobi

e Parallel operations are

Compute r (9= b-[A] x(0
for =1, 2, ...
solve [Mz(-D= (-1
p = r(i-1 z(i-1

if =1 . .
p® =7 © reqUIred N
else_ Dot Products
Bii = Pi1 / Piz e
pO =z D+ B, plD Mat-Vec. Multiplication
endit | SpMV: Sparse Mat-Vec. Mult.
q('): [Al p(') - _
o, = p., /pigl) D O 0O O
x® =x (0 + o pO
r@ =r (1) . a; g® 0 D2 0 0
check convergence | 1| [I\/I] = ..
enc 0 O D O
0 0 0 Dy

Intro-pFEM

Preconditioning, DAXPY

Local Operations by Only Internal Points: Parallel
Processing is possible

1
1 2
IC 2
1G— {z}= [Minv] {r} 3
3 4
doi=1, N
W(i,Z)= W(i,DD) * W(i,R) 4
enddo 1
5
I 6 2
IC— {x}= {x} + ALPHA*{p} DAXPY: double a{x} plus {y} 3
IC {r}= {r] - ALPHAx{q) 7
do i=1, N 8 4
PHI (i)= PHI (i) + ALPHA * W(i,P)
W(i R)= W(i,R) — ALPHA * W(i,Q) 9 1
enddo
10 5
11 3

Intro-pFEM

Dot Products

Global Summation needed: Communication.?
1
L 2
I 2 3
IC—— ALPHA= RHO / {p} {a} 3
C1= 0.d0 .
doi=1, N 4
C1=C1 + W(i,P)=W(i, Q) 1
enddo 5
ALPHA= RHO / Cf 2
6
v 3
3 4
9 1
10 2
11 3

MPI Programming 35

P#0 | A0 |BO|CO|DO P#0 | op.AO-A3 |0p.B0-B3 |0p.CO-C3|0p.DO-D3

MPI_REDUCE ~ =inos st

P#2 |A2|B2|C2|D2
P#3 | A3|B3|C3|D3 P#3

 Reduces values on all processes to a single value
— Summation, Product, Max, Min etc.

e call MPI _REDUCE
(sendbuf, recvbuf, count, dat at ype, op, root, comm i err)

— sendbuf choice | starting address of send buffer
— recvbuf choice O starting address receive buffer
type is defined by ” dat at ype”

— count I I number of elements in send/receive buffer

— dat atype | I data type of elements of send/recive buffer
FORTRAN MPI_INTEGER, MPI_REAL, MPI_DOUBLE_PRECISIO N, MPI_CHARACTER etc.
C MPI_INT, MPI_FLOAT, MPI_DOUBLE, MPI_CHAR e tc

- op I I reduce operation

MPI_MAX, MPI_MIN, MPI _SUM MPI_PROD, MPI_LAND, MPI_BAND etc
Users can define operations by MPI _OP_CREATE

ot I I rank of root process
I I communicator

I (@) completion code
Fortran

|
—
o

;

|
D
=
—

Intro-pFEM

36

Preconditioned CG Solver

e Preconditioning
Diagonal Scaling/Point Jacobi

e Parallel operations are

Compute r (9= b-[A] x(0
for =1, 2, ...
solve [Mz(-D= (-1
p = r(i-1 z(i-1

if =1 . .
p® =7 © reqUIred N
else_ Dot Products
Bii = Pi1 / Piz e
pO =z D+ B, plD Mat-Vec. Multiplication
endit | SpMV: Sparse Mat-Vec. Mult.
q('): [Al p(') - _
o, = p., /pigl) D O 0O O
x® =x (0 + o pO
r@ =r (1) . a; g® 0 D2 0 0
check convergence | 1| [I\/I] = ..
enc 0 O D O
0 0 0 Dy

Intro-pFEM

Matrix-Vector Products
Values at External Points: P-to-P Communication

IC
1G— {a}= [A] {p}

do i=1, N
W(i,Q = DIAGC(i)*W(i,P)
do j= INDEX(i-1)+1, INDEX(i)
W(i,Q = W(@i,Q + AMAT(j)*=W(ITEM(j), P)
enddo
enddo

0000090

37

Intro-pFEM

Mat-Vec Products: Local Op. Possible

1 1
2 2
3 3
4 4
5 5
6 B 6
7 - 7
8 8
9 9
10 10
11 11
12 12

Intro-pFEM

Mat-Vec Products: Local Op. Possible

AW DN

(N | O | O

10

11

12

Dlw [N |

| N | O | O

10

11

12

39

Intro-pFEM

Mat-Vec Products: Local Op. Possible

AW DN

(N | O | O

10

11

12

A TOWOW|IDN|PP

| N | O | O

10

11

12

40

Mat-Vec Products: Local Op. #0

e,

1

2
3
4

a | b 1 W IDN|PF

Mat-Vec Products: Local Op. #1

1 1
2 B 2

3 - 3

4 4

1 1

2 B 2

3 - 3

4 4

5

6 00060600

Mat-Vec Products: Local Op. #2

1 1
2 B 2
3 - 3
4 4
1 1
2 B 2
3 - 3
4 4
5

Intro pFEM

1D FEM: 12 nodes/11 elem’s/3 domains

44

Intro pFEM

1D FEM: 12 nodes/11 elem’s/3 domains

Local ID: Starting from 1 for node and elem at each domain

45

Intro pFEM 46

1D FEM: 12 nodes/11 elem’s /3 domains

Internal/External/Boundary Nodes
Boundary Nodes: Part of Internal Nodes, and External Nodes
of Other Domains

» @-0-0-0.0

o

#197979797???
External Nodes —0—0—100—0
@ 2 © 2 © 1 W W3

° Boundary Nodes

MPI Programming

What Is Peer -to-Peer Communication ?

e Collective Communication
— MPI_Reduce, MPI_Scatter/Gather etc.
— Communications with all processes in the communicator

— Application Area
« BEM, Spectral Method, MD: global interactions are considered
e Dot products, MAX/MIN: Global Summation & Comparison

e Peer-toPeer/Point-to-Point

47

— MPI_Send, MPIl_Recv |
— Communication with limited = 000000
processes ; i _L
« Neighbors oot

— Application Area
« FEM, FDM: Localized Method

MPI Programming

MPI_ISEND

« Begins a non-blocking send

— Send the contents of sending buffer (starting from sendbuf , number of messages: count)
to dest witht ag .

— Contents of sending buffer cannot be modified before calling corresponding MPI _Wai tal | .

« call MPI _| SEND
(sendbuf , count , dat at ype, dest, tag, comm request, ierr)

— sendbuf choice | starting address of sending buffer

— count I I number of elements sent to each process
— datatype | I data type of elements of sending buffer

— dest I I rank of destination

— tag I I message tag

This integer can be used by the application to distinguish
messages. Communication occurs if tag’'s of
MPI_Isend and MPI_lrecv are matched.

Usually tag is set to be “0” (in this class),
— comm I I communicator
communication request array used in MP1_Waitall
rr I O completion code

(@)
c
M
0]
—
@)

48

MPI Programming

MPI|_IRECV

e Begins a non-blocking receive
— Recelving the contents of receiving buffer (starting from r ecvbuf , number of messages:
count) from sour ce with t ag .
— Contents of receiving buffer cannot be used before calling corresponding MPI _Wai t al | .

e call Ml _|I RECV
(recvbuf, count, dat at ype, dest, tag, comm request, i1err)

— recvbuf choice | starting address of receiving buffer

— count I I number of elements in receiving buffer

— datatype | I data type of elements of receiving buffer

— source I I rank of source

— tag I I message tag
This integer can be used by the application to distinguish
messages. Communication occurs if tag’'s of
MPI_Isend and MPI_Irecv are matched.
Usually tag is set to be “0” (in this class),

— comm I I communicator

guest | O communication request used in MPI1_Waitall

e
err I O completion code

49

MPI Programming

MPI WAITALL

« MPI _Waitall blocks until all comm’s, associated with r equest in the array,
complete. It is used for synchronizing MPl _| send and MPI _I r ecv in this class.

o At sending phase, contents of sending buffer cannot be modified before calling
corresponding MPl Wi t al | . At receiving phase, contents of receiving buffer

cannot be used before calling corresponding MPI _Wai t al | .

« MPI Isendand Ml | recv can be synchronized simultaneously with a single
MPI Wi tall ifitis consitent.
— Same r equest should be used in MPl _Isend and MPl _Irecv.

o Its operation is similar to that of MPl _Barri er but, MPl _Wai tal | can not be
replaced by MPI _Barri er.

— Possible troubles using MPlI _Barri er instead of MPl _Wai t al | : Contents of r equest and
st at us are not updated properly, very slow operations etc.

e call MPI _WAITALL (count,request,status,ierr)

— count I I number of processes to be synchronized
— request | /O comm. request used in MPI_Waitall (array size: count)
— status I @) array of status objects

MPI_STATUS_SIZE: defined in ‘mpif.h’, ‘mpi.h’
— ierr I (@) completion code

5N

