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FEM-intro

FDM and FEM

 Numerical Method for solving PDE’s

— Space Is discretized into small pieces (elements, meshes)
« PDE: Partial Differential Equation(s) {gffl7 A2k

* Finite Difference Method (FDM) (HFR) ZE47ni%

— Differential derivatives are directly approximated using
Taylor Series Expansion.
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Finite Difference Method (FDM)
Taylor Series Expansion
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Finite Difference Method (FDM)
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2"d Order Differentiation in FDM
Taylor Series Expansion

* Approximate Derivative at X (center of | and 1+1)
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1D Heat Conduction

o 2nd_Qrder Central Difference
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e Linear Equation at Each Grid Point
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FEM-intro

FDM and FEM

 Numerical Method for solving PDE’s

— Space Is discretized into small pieces (elements, meshes)
« PDE: Partial Differential Equation(s) {gffl7 A2k

* Finite Difference Method (FDM) (HFR) ZE47ni%

— Differential derivatives are directly approximated using
Taylor Series Expansion.

e Finite Element Method (FEM) HEE %%

— Solving “weak form” derived from integral equations.
* “Weak solutions” are obtained.

— Method of Weighted Residual (MWR), Variational Method

— Suitable for Complicated Geometries
o Although FDM can handle complicated geometries ...
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FDM can handle complicated

geometries: BFC
Handbook of Grid Generation
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FIGURE 3.2 Grids in computational and physical domains.



History of FEM

e |n 1950’s, FEM was originally developed as a method
for structure analysis of wings of airplanes under
collaboration between Boeing and University of
Washington (M.J. Turner, H.C. Martin etc.).

— “Beam Theory” Straight Wing: Subsonic
Beam Theory for Calc. of Load
cannot be at the Base of Wings
applied to ) =
sweptback wings
for airplanes with

jet engines.

— Numerical
methods are
needed.

Boeing 747-100

- Swept Wing: Transonic-Supersonic
Beam Theory cannot be applied




History of FEM

o Extended to Various Applications
— Non-Linear: T.J.Oden
— Non-Structure Mechanics: O.C.Zienkiewicz

« Commercial Package

— NASTRAN

e Originally developed by NASA
« Commercial Version by MSC
 PC version is widely used in industries

10
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Recent Research Topics

Non-Linear Problems
— Crash, Contact, Non-Linear Material
— Discontinuous Approach
« X-FEM
Parallel Computing
— also iIn commercial codes

Adaptive Mesh Refinement (AMR)

— Shock Wave, Separation

— Stress Concentration

— Dynamic Load Balancing (DLB) at Parallel Computing
Mesh Generation

— Large-Scale Parallel Mesh Generation

11
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3D Simulations for Earthquake
Generation Cycle
San Andreas Faults, CA, USA

Stress Accumulation at Transcurrent Plate Boundaries
Adaptive Mesh Refinement (AMR)




High -resolution needed at

Adaptive FEM
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Supersonic Flow around a Sphere

ldeal Gas, M= 1.40, Uniform Flow, Re=10°
before/after Dynamic Load Balancing
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before after before after
PEO 137 - 793 652 3834 2527
PE1 137 - 696 650 2769 2526
PE2 136 - 668 652 2703 2522

PE3 136 - 448 651 1390 2524
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 Numerical Method for PDE (Method of Weighted
Residual)

e Gauss/Green’s Theorem
 Numerical Method for PDE (Variational Method)




FEM-intro 16

Approximation Method for PDE
Partial Differential Equations: {R{ %5 A X

e Consider solving the following differential
equation (boundary value problem), domain V,
boundary S:

L(u) = f

U (solution of the equation) can be approximated
by function u,, (linear combination)

M
u, = Z aWy Y. Trial/Test Function (57 B4%8) (known
= function of position, defined in domain and
- at boundary. “Basis” in linear algebra.

d  Coefficients (unknown)
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Method of Weighted Residual
MWR: E&H TS ZREE
» U, is exact solution of u if R (residual : 5%Z)= 0:
R=L(u,)- f
* In MWR, consider the condition where the following

iIntegration of R multiplied by w (weight/weighting
function : EABE%K) over entire domain is 0

J.WR(uM)dV:O

« MWR provides “smoothed” approximate solution,
which satisfies R=0 in the domain V
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Method of Weighted Residual
MWR: EA T S ZREE

» U, is exact solution of u if R (residual : 5%Z)= 0:
RA
R=L(u,)-f
(Uy ) /_\\//\\J,
* In MWR, consider the condition where the following
iIntegration of R multiplied by w (weight/weighting

function : EABE%K) over entire domain is 0

J.WR(uM)dV:O

« MWR provides “smoothed” approximate solution,
which satisfies R=0 in the domain V
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Variational Method (Ritz) (1/2)
%535k
 |tis widely known that exact solution u provides

extreme values (max/min) of “functional : JL.ES%L” 1(u)

— Euler equation: differential equation satisfied by u, if
functional has extreme values (1B{E)

— Euler equation is satisfied, if u provides extreme values of
1(u).

— provide extreme values : {8 &t 4% (or stationarize)
 For example, functional, which corresponds to

governing equations of linear elasticity (principle of

virtual work, equilibrium equations), Is “principle of

minimum potential energy (principle of minimum strain

energy) (IRILF¥F—mw/N, EAIRILFT—gR/D) .
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Variational Method (Ritz) (2/2)
%535k

» Substitute the following approx. solution into 1(u),
and calculate coefficients a; under the condition

where I,,=I(u,,) provides extreme values, then u,,
IS obtained:

M
Uy = ZaiLPi
=)

 Variational method is theoretical method, and
can be only applied to differential equations,
which has equivalent variational problem.
— In this class, we mainly use MWR

— Brief overview of Ritz method will be given later In this
material.

20
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Entire region is discretized into fine

e
a
e

21

Finite Element Method (FEM)
ARERE

ements (%) , and the following
oproximation is applied to each

ement.
M

:Zaiq)i
=1

MWR or Variational Method is applied to each
element

Each element matrix is accumulated to global
matrix, and solution of obtained linear equations
provides approx. solution of PDE.

Details of FEM will be provided in the next material.
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Example of MWR (1/3)

e Thermal Equation

2 2
/ az+aT2 +Q=0 InV
ox= oy

A:Conductivity, Q:Heat Gen./VVolume
T =0 at boundary S

* Approximate Solution
T=) aW,
j=1
e Residual

” aw 0°W
R(a;,X,Y) = AZa e o 1O

22
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Example of MWR (2/3)

* Multiply weighting function w;, and apply integration
over V.

J-vvi RdV =0

 If a set of weighting function w; Is a set of n
different functions, the above integration provides
a set of n linear equations:

o # trial/test functions = # weighting functions

jw an+an dV = ijdv (i=1...n)
ox> oy’

j=1
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Example of MWR (3/3)

 Matrix form of the equations is described

as follows:
Bfa} ={Q}
B.:jwzl azwj+azwj dv Q.:—ijdv
L axe oy’ A

Actual approach is slightly different from this
(more detalled discussions in the next material)



FEM-intro

Various types of MWR’s

« Various types of weighting functions

« Collocation Method 2 A
 Least Square Method R/NBEER
« Galerkin Method Ho—F ik

25
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Collocation Method

* Weighting function: Dirac’s Delta Function o

d(z)=w if z=0
3z)=0 if zz0, _[ z)dz=1 %

, 5(X X,)  x:location T

* |n collocation method, R (residual) is setto O at n

collocation points by feature of Dirac’s Delta Fn. o:

J RI(x-x;)dV =R|,., ggi :if; zoooeftt;(;;i

* |f nincreases, R approaches to O over entire
domain.

26
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Least Square Method

* Weighting function:
OR
W =——
0a
* Minimize the following integration according to a
(unknowns):

(@)= j [R@a,0J av
0R(3,X)
0a

dVv

0

—[l(a)] 2] R(a,X)

'

R(a X)

dVv

0

aR(a X)’

<¢—,
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Galerkin Method

 Weighting Function = Test/Trial Function:

w =Y

o Galerkin, Boris Grigorievich
— 1871-1945
— Engineer and Mathematician of Russia

— He got a hint for Galerkin Method while
he was imprisoned because of anti-
czarism (1906-1907).

28
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Example (1/2)

e Governing Equation

2

d—l21+u+x:0 (0<x<1])
dx

 Boundary Conditions: Dirichlet
u=0@x=0
u=0@x=1

e Exact Solution
u:sinx_

sinl

29
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_sinx

Exact Solution U=— X
sSinl

0.08

0.06

> 0.04

0.02 f
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Example (2/2)

* Assume the following approx. solution:

u=X(1-x)(a +a,x) = x(1-x)a +x*(1-x)a, =a ¥, +a,¥,
W =x1-x), W,=x°(1-x)

Test/trial function satisfies u=0@x=0,1

e Residual Is as follows:

R(a,,a,,X) = X+ (-2+Xx—X)a, +(2-6x+Xx*—x’)a,

o Let's apply various types of MWR to this equation

— We have two unknowns (a,, a,), therefore we need two
Independent weighting functions.
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Collocation Method
e Nn=2, x=1/4, x=1/2 for collocation points:

1 1
R(ai’aQ’Z) =0, R(ai’aQ’E) =0

R(a,,a,,X) = X+(-2+x-x°)a, +(2-6x+x° —X°)a,

e Solution:

29/16 -35/64](a,) [1/4 D .- 6
{7/4 718 H }_{1/2} T

P

0 =227 451 40
217

32
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Least Square Method

* Weighting functions, Residual:

W1:£:—2+X—X2, W2:£=2—6x+x2—x3
0 0a,
R(a,,a,,X) =X+ (-2+x-x°)a, +(2-6x+x* - x)a,
e Solution:

fR( IR dx—le( X) (=24 X~ X°) dx =0
(@, 2 )5 = | R(a, 2, =

1 R 1
[R@,,9 = dx= [ R(@,a,,X) (2-6x+x* ~x°) dx=0

0 aa,Z 0
46161 41713

202 10170(a) (55 _
{707 1572}{%}_{399} —p . -
x(l X)
24613

24613 2 24613

-(46161+ 4171)
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Galerkin Method

* Weighting functions, Residual:
W =W =x1-x), w,=W,=x’(1-X)

R(a,,a,,X) = x+(-2+x-x°)a, +(2-6x+x° - x°)a,
e Results:

J:R(awamx) ¥y dx= j:R(al,az,x)(x—xz) dx=0

J:R(al, a,, X)W, dx= J;R(ai,az, X) (X2 — X3) dx=0

3/10 3/20(a| (1/12 P o, - 71
{3/20 13/105}{%}_{1/20} %~ 36¢

u=X47% 714 63y

36¢

34



FEM-intro

35

Results

. Collocation | Collocation Least- )

0.25 0.04401 0.04493 0.04462 0.04311 0.04408
0.50 0.06975 0.07143 0.07031 0.06807 0.06944
0.75 0.06006 0.06221 0.06084 0.05900 0.06009

Galerkin Method provides the most accurate solution

— If functional exists, solutions of variational method and
Galerkin method agree.

« A kind of analytical solution (later of this material)

Many commercial FEM codes use Galerkin method.
In this class, Galerkin method Is used.

Least-square may provide robust solution in Navier-
Stokes solvers for high Re.
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Homework (1/2)

* Apply the following two method in the next page to
the same equations:
— Method of Moment
— Sub-Domain Method
— Results at x=0.25, 0.50, 0.75

o Compare the results of “collocation method” on
“non-collocaion points” with exact solution
— Explain the behavior
— Try different collocation points

36
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Homework (2/2)
e Method of Moment (E—X* > k%)

w=x" (i=1)

— Weighting functions ?

e Sub-Domain Method (&f%> %815 ;%)

— Domain Vs divided into sub-domains V

(I=1-n), and weighting functions w; are Wl | !
given as follows:

1 for points inV ]

{() for points out oV,

W =

— Two unknowns, two sub
domains

— Two sub-domains do not share
any overlaps
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 Numerical Method for PDE (Method of Weighted
Residual)

 Gauss/Green’s Theorem
 Numerical Method for PDE (Variational Method)
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Gauss’s Theorem

IEGU L0V 0w

o oy o j dv = _i(UnX +Vn, +Wn,)ds

\Y

3D (x,y,2

DomainV surrounded by smooth close
surfaceS

3 continuous functions defined \h;

- Uxy,z) Vx\y,z) W(xy,z)

Outward normal vectan on surfaces.

- n,, n, n, direction cosine

39
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Green’s Theorem (1/2)

« Assume the following functions:

U = AG_B’ \V = AG_B, W = AG_B
0X oy 0z
e Thus:

6U+0V+0W 0°B GB GB aAaB+0AaB+aAaB
oXx oy 0z 0x° ay az OX 0X 0y oy 0z 0z

o Apply Gauss’s theorem:
J‘ 0° B 6 B a I23 dV+J OAOB+6AOB+0AOB ny
OX 0X 0y dy 0z 0z

jUn +Vn, +an dS= jﬁ{ aB y+a—BnZ] dS
4 oy 0z
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Green’s Theorem (2/2)

. (cont.)
j n + a_BnZ dS:j aBax+aBay+aBaz 4S
0z > \0xon dyodn 0zon
0B _ L
= — dS % Gradient of B to the direction of normal vector
. Finally:

j aB aB aB v = IA ds_j[aAaB+0AaB+0AaBjdV
2\ 0X 0X 0y 0y 0z 0z

« Appears often after next class
— From 29 order differentiation tostorder differentiation.
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In Vector Form

e Gauss’s Theorem

jmmvdv:ijnds
V S

e Green’s Theorem

iju dv = J(vDu)Tn dS—j(DTv)(Du) dv

Vv

42
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 Numerical Method for PDE (Method of Weighted
Residual)

e Gauss/Green’s Theorem
 Numerical Method for PDE (Variational Method)
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Variational Method (Ritz) (1/2)
%535k
 |tis widely known that exact solution u provides

extreme values (max/min) of “functional : JL.ES%L” 1(u)

— Euler equation: differential equation satisfied by u, if
functional has extreme values (1B{E)

— Euler equation is satisfied, if u provides extreme values of
1(u).

— provide extreme values : {8 &t 4% (or stationarize)
 For example, functional, which corresponds to

governing equations of linear elasticity (principle of

virtual work, equilibrium equations), Is “principle of

minimum potential energy (principle of minimum strain

energy) (TRILF¥F—mw/N, EAIRILFT—F/ID) .
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Variational Method (Ritz) (2/2)
%535k

» Substitute the following approx. solution into 1(u),
and calculate coefficients a; under the condition

where I,,=I(u,,) provides extreme values, then u,,
IS obtained:

M
Uy = ZaiLPi
=)

e Variational method is theoretical method, and
can be only applied to differential equations,
which has equivalent variational problem.

— In this class, we mainly use MWR
— Brief overview of Ritz method will be given.

45
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Application of Variational Method (1/5)

e Consider the following integration I(u) in 2D-domalin
V, where u(x,y)is unknown function of x and v:

-

o2

.

J
~N

dVv

Q: known value
u=0 atboundary S

e I(u) is “functional (GLES%L) " of function u
e U* IS a twice continuously differentiable function and
minimizes I(u). 771s an arbitrary function which

satisfies n7=0 at boundary S, and a Is a parameter.
Consider the following equation:

u(x, y)=u"(x y)+a @(x,y)

S
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Application of Variational Method (2/5)

« At this stage, the following condition Is necessary

(HLEEH)
(0)2 1)

« Assume that functional I(u™+ an) is a function of a.
Functional | provides minimum value, if a=0.
Therefore, the following equation is obtained:

0 :
El(u +a@7LO_o

« According to the definition of functional I(u),
following equation is obtained (next page)

I(au o7 , du a”—andV:O
v\ OX Ox 0oy oy
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dVv

—
c
N
I
—
NLI—‘
* N\
Q)‘Q)
X |
N S
N
+
‘Q)
-
N S
N
I
N
QO
-

0

—I\u +a =0

aa ( m]10':0
a{l(auﬂ:au -0 (au) au:a(u*+am7):au* +0 9
oa | 2\ ox 0xX da \ 0X 0X 0X 0X 0X
0 (a_uj:afz a=0=2 1(a_uf _ouap 9 J1fou)| _ou oy
da\ox) ox’ da | 2\ ox ox ox Oda |2\ dy oy oy
0 olu +am) _
-(Qu==—""=qy

jtau 07 , du an—Qn]dV:O

yL0X ox oy oy

48
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Application of Variational Method (3/5)

« Apply Green’s theorem on 15t and 2"d term of LHS,
and apply integration by parts, then following
equation is obtained: (A=n, B—u*) (next page)

0°u’ 6 u
- + dv + —dS 0
\J;( oX* ay Q}7 Il?

where ou :6u n +6Ln Gradient ofu* in the direction
on 0x = dy ’ of normal vector

e At boundary S 7=0:
0°u 0°u _
l( o oy +Q}7 =0
* (A) Is required, if the above Is true for arbitrary n

0°u’ 6 u
0 (A
ax2 oy* *Q=0 (A
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Green’s Theorem

j(au o7 , ou aq_andV:O
L ox 0x oy oy
¢« (A=n, B=u*)
2 2
IA 0|23+0I23 dV:jAa—BdS—_[ OAOB+6ADB d\
s o\ o0xX® oy < 0N \OXOX 0yody




FEM-intro 51

Application of Variational Method (4/5)

e Equation (A) Is called “Euler equation”

— Necessary condition (WAZESEH) of u*, which minimizes
functional I(u), Is that u* satisfies the Euler equation.

o Sufficient condition (+%54)
— Assume that u” is solution of the Euler equation and an=3au

o+ )-1{u)= | |
-J[azuz* Jou +def dv +ﬁ< [a(au* )jz +[a(au* )jz v

x> oy’ 0X oy
d=0 A2=0
First Variation Second Variation

2JI~ e e IR
BN F_RKN
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Application of Variational Method (5/5)

It has been proved that u” (solution of Euler equation)
minimizes functional I(u).

I(u* +dj*)2 | (u)

 Therefore, boundary value problem by Euler equation
(A) with B.C. (u=0@5S) Is equivalent to variational
problem.

— Solving equivalent variational problem provides solution of

Euler equation (Poisson’s equation/Heat Conduction
Equation in this case)

— I I | * *
Functional must exist ! 92, . 92U

ox>  oy°

+Q=0 (A)



FEM-intro 53

Approx. by Variational Method (1/4)

e Functional

1 2 )
| (u):j< %(%j —%uz — xu bdx
0 J

.

e Boundary Condition
u=0@x=0
u=0@x=1

e Obtain u, which “stationalizes” functional I1(u) under
this B.C.

— Corresponding Euler equation is as follows (same as
equation in p.29):
2

%+u+x:0 (0< x<1) (B-1)
X
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Approx. by Variational Method (2/4)

* Assume the following test function with n-th order for
function u, which iIs twice continuously differentiable:

u, = x[ﬁ.’L— x)[ﬁa1 +a,X+a,x’ +--.+ahx”'1) (B-2)

 If we increase the order of test function, u, is closer
to exact solution u. Therefore, functional I(u) can be
approximated by I(u,):
— If I(u,)) stationarizes, I(u) also stationarizes.

* \We need to obtain set of unknown coefficients a,,
which satisfies the following stationary condition:

ol (u) _ L _
. =0 (k=1~n) (B-3)
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Ritz Method

» Equation (B-3) is linear equations for a;-a...

 |f this solutions Is applied to equation (B-2),
approximate solution, which satisfies Euler equation
(B-1), is obtained.
— Approximate solution, but stationalizes I(u) strictly

* This type of method using a set of coefficients a;-a, IS
called “Ritz Method”.



Approx. by Variational Method (3/4)

e Ritz Method, n=2
u, = X[t~ x)(fa, +a,x) = x [~ x) @&, +x* [{L- ) &,

1

ol (u,) o

0a, 0

+

0a,

+

0= j(l— X — xz)(1—3x+ xz)dx:a1

I
O =y

01{uy) _g_, }{(1— 2x)(2x - 3%2 ) x3(1- x) Jax

_Jl' (2x -3x° +X° )(Zx - 2x* = x° )dx
| 0

{(1— 2x)(2x - 3x2)— x3(1- x)z}dx_




Supplementation for (3/4) (1/3)

e Ritz Method,n=2

u, =><E(11—><)Eﬁa1+a2><)=xtﬁl—><)@1+x2 1-x) 2,

1 (
I(u)=j<%(jij %uz XU pdx

.
Y4

1(cuj2 1, _
—| — | ==u"—=xu=
2\ dx 2

(1-24)a, +(ex-3¢ ), - [l x) @, + ¢ - ), |
X2 - x) @, +x° L~ x ]




Supplementation for (3/4) (2/3)

1(cuj2 1,
—| == | —Zu"-xu=
2\ dXx 2

Lf1- 208, + (2x-3¢, - L x)m, i 0)a, ]

:XZ [f1— x) &, + x° f1- x) ]

) _ (1-2¢) -¥[1-%"=[1- 2x+ X{+ ][ + 2¢ x{ £ ¥]
0= =[1-x=x ][ 1-3x+ X |

j{ 1 2X X)Z}dx_ a,

1

+ j{l 2x)(2x - 3x? ) - 3[ql_x)2}dx_az‘jX2E¢L—x)dx:o

0




Supplementation for (3/4) (3/3)

1(0u)2 1 .,
| —| —=u“—-xu=
2\ dX 2

(1-24)a, +(ex-3c ), - [xli-x)m +x¢ -,
X2 [~ X) &, + X (L ]

2

|
2!

_j{(l— 2x)(2x - 3x2)— X3 - x)z}dx_ a,

" j{(z _3X2)2 -x* [{1- X)Z}dx_az B J x* [{L- x)dx =0
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Approx. by Variational Method (4/4)

* Final linear equations are as follows:

3/10 3/20 1/12 7
{3/20 13/105}{%} {1/20} ) al_ %
X(1—X)

U= (71+63X)
36¢

 This result is identical with that of Galerkin Method
— NOT a coincidence !
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Galerkin Method

* Weighting functions (which satisfy u=0@x=0,1),
Residual:
w, =W =x(1-x), w, =W, =x’(1-X)

R(a,,a,,X) = X+(-2+x-x°)a, +(2-6x+x° —X°)a,
 Results:

JlR(ai,az,x) ) dx:le(ai,az,x)(x—xz) dx=0

0 0

JlR(ai,az,x) W, dx:rR(ai,aQ,x)(xz %) dx=0

0 0

3/10 3/20(a) [1/12 71 _7
{3/20 13/105}{%}_{1/20} = % T36c 2 a1

X(1—X)

u= (71+ 63X)

36¢
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'Ritz Method & Galerkin Method (1/4)

u, = xf1-x){a+ax=aw+r gw= & + ¥,

iafduy 1 i (duj _ du, a(duj ( dw; dwzjde
'(“)‘H2( j —Su - X“}dx oa,| 2\ dx ) | dx oa %ax % ax ) dx

d |
A Euz }:@%: a1W1'|"5‘2W2)Ey\/1

08, |
01{uy) _y_, %:xuz]:x%:xﬁwl
02,
1) 295 o L P, + )+ =0
_! o AT o x— _‘(‘;Wl wWa, +W,a, )+ X x——
al(uz)zoj
03, ]

1 2 1
J-{dWL dwy, 3, +(—dwzj 3, dx| = | [wo{(wa, +w,a,)+x}dx| =0
0 0
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Ritz Method & Galerkin Method (2/4)
ol (u,) _

63

; dwy ’ dw, dw (1 _
'H(aj wr dx dx2 az}dx - IW{(W131+W2a2)+x}dx =0

0

2o

dx dx ' dxX
W, = LPZ = x2(l— X) i( dwzj _dw; dw, de2
0 dx dx M7

}i{
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Ritz Method & Galerkin Method (3/4)

aI(UZ):O:> d—lzj+u+X:O
0a, dx
N ETRE R FURSR S
VL dx dx? . ’

Galerkin Method !!
w, =¥, = x(1-x),

w, =¥, =x*(1-x)

1 2 2
_.[Wz{(d Wla1+d e )+(W131+W2a2)+x}dxzo
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Ritz Method & Galerkin Method (4/4)

 This example Is a very special case. But, generally
speaking, results of Galerkin method and Ritz
method agree, Iif functional exists.

e Although Ritz method provides approx. solution, that
satisfies Euler equation in strict sense. Therefore,
solution of Ritz method is closer to exact solution.

— This Is the main reason that Galerkin method is accurate.
e Please just remember this.
* This relationship between Ritz and Galerkin is not
correct If functional does not exist.

— In these cases, Galerkin method is not necessarily the
best method from the viewpoint of accuracy and
robustness.
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