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FDM and FEM

• Numerical Method for solving PDE’s
– Space is discretized into small pieces (elements, meshes)

• PDE: Partial Differential Equation(s) 偏微分方程式

• Finite Difference Method (FDM)（有限）差分法
– Differential derivatives are directly approximated using 

Taylor Series Expansion.
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Finite Difference Method (FDM)
Taylor Series Expansion
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4

Finite Difference Method (FDM)
（有限）差分法：巨視的微分

macroscopic differentiation
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2nd Order Differentiation in FDM
Taylor Series Expansion

• Approximate Derivative at × (center of i and i+1)
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1D Heat Conduction

• Linear Equation at Each Grid Point 
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FDM and FEM

• Numerical Method for solving PDE’s
– Space is discretized into small pieces (elements, meshes)

• PDE: Partial Differential Equation(s) 偏微分方程式

• Finite Difference Method (FDM)（有限）差分法
– Differential derivatives are directly approximated using 

Taylor Series Expansion.

• Finite Element Method（FEM）有限要素法
– Solving “weak form” derived from integral equations.

• “Weak solutions” are obtained.

– Method of Weighted Residual (MWR), Variational Method 
– Suitable for Complicated Geometries

• Although FDM can handle complicated geometries ...
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FDM can handle complicated 
geometries: BFC

Handbook of Grid Generation
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History of FEM
• In 1950’s, FEM was originally developed as a method 

for structure analysis of wings of airplanes under 
collaboration between Boeing and University of 
Washington (M.J. Turner, H.C. Martin etc.).

9

– “Beam Theory” 
cannot be 
applied to 
sweptback wings 
for airplanes with 
jet engines.

– Numerical 
methods are 
needed.



History of FEM
• In 1950’s, FEM was originally developed as a method 

for structure analysis of wings of airplanes under 
collaboration between Boeing and University of 
Washington (M.J. Turner, H.C. Martin etc.).
– “Beam Theory” cannot be applied to sweptback wings for 

airplanes with jet engines.   

• Extended to Various Applications
– Non-Linear: T.J.Oden
– Non-Structure Mechanics: O.C.Zienkiewicz

• Commercial Package
– NASTRAN

• Originally developed by NASA
• Commercial Version by MSC
• PC version is widely used in industries
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Recent Research Topics

• Non-Linear Problems
– Crash, Contact, Non-Linear Material
– Discontinuous Approach

• X-FEM

• Parallel Computing
– also in commercial codes

• Adaptive Mesh Refinement (AMR)
– Shock Wave, Separation
– Stress Concentration

– Dynamic Load Balancing (DLB) at Parallel Computing

• Mesh Generation
– Large-Scale Parallel Mesh Generation
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3D Simulations for Earthquake 
Generation Cycle

San Andreas Faults, CA, USA
Stress Accumulation at Transcurrent Plate Boundaries

Adaptive Mesh Refinement (AMR)
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Adaptive FEM: High -resolution needed at 
meshes with large deformation (large 

accumulation)

13



Supersonic Flow around a Sphere
Ideal Gas, M= 1.40, Uniform Flow, Re=106

before/after Dynamic Load Balancing

2-Lev. Adapted
before      after
3834 2527

2769        2526

2703        2522

1390 2524

1-Lev. Adapted
before     after
793 652

696         650

668         652

448 651

Initial Grid

PE0    137 -

PE1    137           -

PE2    136 -

PE3    136           -
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• Numerical Method for PDE (Method of Weighted 
Residual)

• Gauss/Green’s Theorem
• Numerical Method for PDE (Variational Method)
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Approximation Method for PDE
Partial Differential Equations: 偏微分方程式

• Consider solving the following differential 
equation (boundary value problem), domain V, 
boundary S :

fuL =)(

• u (solution of the equation) can be approximated 
by function uM (linear combination)

i

M

i

iM au Ψ=
=1

iΨ

ia

Trial/Test Function （試行関数）(known 
function of position, defined in domain and 
at boundary. “Basis” in linear algebra.

Coefficients (unknown)
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Method of Weighted Residual 
MWR: 重み付き残差法

• uM is exact solution of u if R (residual：残差)= 0: 

fuLR M −= )(

• In MWR, consider the condition where the following 
integration of R multiplied by w (weight/weighting 
function：重み関数) over entire domain is 0

0)( =
V

M dVuRw

• MWR provides “smoothed” approximate solution, 
which satisfies R=0 in the domain V
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Method of Weighted Residual 
MWR: 重み付き残差法

• uM is exact solution of u if R (residual：残差)= 0: 

fuLR M −= )(

• In MWR, consider the condition where the following 
integration of R multiplied by w (weight/weighting 
function：重み関数) over entire domain is 0

0)( =
V

M dVuRw

• MWR provides “smoothed” approximate solution, 
which satisfies R=0 in the domain V

R
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Variational Method (Ritz) (1/2)
変分法

• It is widely known that exact solution u provides 
extreme values (max/min) of “functional：汎関数” I(u) 
– Euler equation: differential equation satisfied by u, if 

functional has extreme values（極値）
– Euler equation is satisfied, if u provides extreme values of 

I(u).

– provide extreme values：停留させる（or stationarize）

• For example, functional, which corresponds to 
governing equations of linear elasticity (principle of 
virtual work, equilibrium equations), is “principle of 
minimum potential energy (principle of minimum strain 
energy)（エネルギー最小，歪みエネルギー最小）” .
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Variational Method (Ritz) (2/2)
変分法

i

M

i

iM au Ψ=
=1

• Substitute the following approx. solution into I(u), 
and calculate coefficients ai under the condition 
where IM=I(uM) provides extreme values, then uM

is obtained:

• Variational method is theoretical method, and 
can be only applied to differential equations, 
which has equivalent variational problem.
– In this class, we mainly use MWR
– Brief overview of Ritz method will be given later in this

material.
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Finite Element Method (FEM)
有限要素法

• Entire region is discretized into fine 
elements（要素）, and the following 
approximation is applied to each 
element: 

i

M

i

iM au Ψ=
=1

• MWR or Variational Method is applied to each 
element

• Each element matrix is accumulated to global 
matrix, and solution of obtained linear equations 
provides approx. solution of PDE.

• Details of FEM will be provided in the next material.
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Example of MWR (1/3)

• Thermal Equation
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Example of MWR (2/3)

• Multiply weighting function wi, and apply integration 
over V: 

0= dVRw
V

i

• If a set of weighting function wi is a set of n
different functions, the above integration provides 
a set of n linear equations:

• # trial/test functions = # weighting functions  
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Example of MWR (3/3)

• Matrix form of the equations is described 
as follows: 

[ ]{ } { }QaB =

dVQwQdV
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Actual approach is slightly different from this
(more detailed discussions in the next material)
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Various types of MWR’s

• Various types of weighting functions

• Collocation Method 選点法

• Least Square Method 最小自乗法

• Galerkin Method ガラーキン法



FEM-intro 26

Collocation Method
• Weighting function: Dirac’s Delta Function δ

( )ixx −= δiw x：location

• In collocation method, R (residual) is set to 0 at n
collocation points by feature of Dirac’s Delta Fn. δ : 

( )
ixxixx ==− |RdVR
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• If n increases, R approaches to 0 over entire 
domain.
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Least Square Method
• Weighting function: 

i
i a

R
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Galerkin Method

• Weighting Function = Test/Trial Function: 

iiw Ψ=

• Galerkin, Boris Grigorievich
– 1871-1945
– Engineer and Mathematician of Russia
– He got a hint for Galerkin Method while 

he was imprisoned because of anti-
czarism (1906-1907).
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Example (1/2)

• Governing Equation 

)10(0
2

2

≤≤=++ xxu
dx

ud

• Boundary Conditions: Dirichlet
0@0 == xu

1@0 == xu

• Exact Solution

x
x

u −=
1sin

sin
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Exact Solution x
x

u −=
1sin

sin

0

0.02

0.04

0.06

0.08

0.00 0.25 0.50 0.75 1.00

x

u
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Example (2/2)
• Assume the following approx. solution: 

22112
2

121 )1()1())(1( Ψ+Ψ=−+−=+−= aaaxxaxxxaaxxu

• Residual is as follows: 

)1(),1( 2
21 xxxx −=Ψ−=Ψ

2
32

1
2

21 )62()2(),,( axxxaxxxxaaR −+−+−+−+=

• Let’s apply various types of MWR to this equation
– We have two unknowns (a1, a2), therefore we need two 

independent weighting functions.

Test/trial function satisfies u=0@x=0,1
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Collocation Method

• n=2，x=1/4，x=1/2 for collocation points:

• Solution:

0)
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Least Square Method
• Weighting functions, Residual:

• Solution:
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Galerkin Method
• Weighting functions, Residual:

• Results: 
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Results

• Galerkin Method provides the most accurate solution
– If functional exists, solutions of variational method and 

Galerkin method agree.
• A kind of analytical solution (later of this material)

• Many commercial FEM codes use Galerkin method.
• In this class, Galerkin method is used.
• Least-square may provide robust solution in Navier-

Stokes solvers for high Re.

Galerkin
Least-
Square

Collocation
0.33-0.67

Collocation
0.25-0.50

AnalyticalX

0.044080.043110.044620.044930.044010.25

0.069440.068070.070310.071430.069750.50

0.060090.059000.060840.062210.060060.75
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Homework (1/2)
• Apply the following two method in the next page to 

the same equations:
– Method of Moment
– Sub-Domain Method

– Results at x=0.25, 0.50, 0.75

• Compare the results of “collocation method” on 
“non-collocaion points” with exact solution
– Explain the behavior 
– Try different collocation points
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Homework (2/2)
• Method of Moment（モーメント法）

)1(1 ≥= − iw i
i x

– Weighting functions ?

• Sub-Domain Method（部分領域法）
– Domain V is divided into sub-domains Vi 

(i=1-n), and weighting functions wi are 
given as follows:





=
0

1
iw

for points in Vi

for points out of Vi

– Two unknowns, two sub 
domains

– Two sub-domains do not share 
any overlaps 0 1

1

1

0 1

1w

2w
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• Numerical Method for PDE (Method of Weighted 
Residual)

• Gauss/Green’s Theorem
• Numerical Method for PDE (Variational Method)
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Gauss’s Theorem

( )dSWnVnUndV
z

W

y
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x
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S

zyx
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 ++=









∂
∂+

∂
∂+

∂
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• 3D （x,y,z）

• Domain V surrounded by smooth closed 
surface S

• 3 continuous functions defined in V :
– U(x,y,z)，V(x,y,z)，W(x,y,z)

• Outward normal vector n on surface S: 
– nx，ny，nz: direction cosine

V

S
n
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Green’s Theorem (1/2)
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Green’s Theorem (2/2)
• (cont.)

• Finally:
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• Appears often after next class
– From 2nd order differentiation to 1st order differentiation. 

Gradient of B to the direction of normal vector
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In Vector Form

• Gauss’s Theorem

• Green’s Theorem

dSdV
S

T

V

nww  =⋅∇

( ) ( )( ) dVuvdSuvdVuv
V

T
T

SV

∇∇−∇=∆  n
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• Numerical Method for PDE (Method of Weighted 
Residual)

• Gauss/Green’s Theorem
• Numerical Method for PDE (Variational Method)
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Variational Method (Ritz) (1/2)
変分法

• It is widely known that exact solution u provides 
extreme values (max/min) of “functional：汎関数” I(u) 
– Euler equation: differential equation satisfied by u, if 

functional has extreme values（極値）
– Euler equation is satisfied, if u provides extreme values of 

I(u).

– provide extreme values：停留させる（or stationarize）

• For example, functional, which corresponds to 
governing equations of linear elasticity (principle of 
virtual work, equilibrium equations), is “principle of 
minimum potential energy (principle of minimum strain 
energy)（エネルギー最小，歪みエネルギー最小）” .
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Variational Method (Ritz) (2/2)
変分法

i

M

i

iM au Ψ=
=1

• Substitute the following approx. solution into I(u), 
and calculate coefficients ai under the condition 
where IM=I(uM) provides extreme values, then uM

is obtained:

• Variational method is theoretical method, and 
can be only applied to differential equations, 
which has equivalent variational problem.
– In this class, we mainly use MWR
– Brief overview of Ritz method will be given.
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Application of Variational Method (1/5)
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• Consider the following integration I(u) in 2D-domain 
V, where u(x,y) is unknown function of x and y:

S

V

• I(u) is “functional（汎関数）” of function u
• u* is a twice continuously differentiable function and 

minimizes I(u). η is an arbitrary function which 
satisfies η=0 at boundary S, and α is a parameter. 
Consider the following equation:  

Q: known value

0=u at boundary S

( ) ( ) ( )yxyxuyxu ,,, * ηα ⋅+=
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Application of Variational Method (2/5)

( ) ( )*uIuI ≥

• At this stage, the following condition is necessary
（必要条件）:

( ) 0
0

* =⋅+
∂
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=α

ηα
α

uI

• Assume that functional I(u*+αη) is a function of α. 
Functional I provides minimum value, if α=0. 
Therefore, the following equation is obtained:

• According to the definition of functional I(u), 
following equation is obtained (next page)
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Application of Variational Method (3/5)
• Apply Green’s theorem on 1st and 2nd term of LHS, 

and apply integration by parts, then following 
equation is obtained:（A=η, B=u*）(next page) ：

• At boundary S, η=0: 

0
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Gradient of u* in the direction 
of normal vector
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• (A) is required, if the above is true for arbitrary η
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Green’s Theorem

• （A=η, B=u*）：
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Application of Variational Method (4/5)

• Equation (A) is called “Euler equation”
– Necessary condition （必要条件）of u*, which minimizes 

functional I(u), is that u* satisfies the Euler equation.

• Sufficient condition（十分条件）
– Assume that u* is solution of the Euler equation and αη=δu*

( ) ( )
( ) ( )

dV
y

u

x

u
dVuQ

y

u

x

u

uIuuI

VV 




















∂
∂+









∂
∂+








+

∂
∂+

∂
∂−

=−+


2*2*

*
2

*2

2

*2

***

2

1 δδδ

δ

δI= 0
First Variation
第一変分
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Second Variation
第二変分
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Application of Variational Method (5/5)
• It has been proved that u* (solution of Euler equation) 

minimizes functional I(u).

( ) ( )*** uIuuI ≥+ δ

• Therefore, boundary value problem by Euler equation 
(A) with B.C. (u=0@S) is equivalent to variational 
problem.
– Solving equivalent variational problem provides solution of 

Euler equation (Poisson’s equation/Heat Conduction 
Equation in this case)

– Functional must exist !

*u

0
2

*2

2

*2

=+
∂
∂+

∂
∂

Q
y

u

x

u
(A)



FEM-intro 53

Approx. by Variational Method (1/4)

• Functional

( ) dxxuu
dx

du
uI 
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• Boundary Condition
0@0 == xu

1@0 == xu

• Obtain u, which “stationalizes” functional I(u) under 
this B.C.
– Corresponding Euler equation is as follows (same as 

equation in p.29):

)10(0
2

2

≤≤=++ xxu
dx

ud (B-1)
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Approx. by Variational Method (2/4)

• Assume the following test function with n-th order for 
function u, which is twice continuously differentiable:

( ) ( )12
3211 −++++⋅−⋅= n

nn xaxaxaaxxu ⋯

• If we increase the order of test function, un is closer 
to exact solution u. Therefore, functional I(u) can be 
approximated by I(un):
– If I(un) stationarizes, I(u) also stationarizes.

• We need to obtain set of unknown coefficients ak, 
which satisfies the following stationary condition:

( ) ( )nk
a

uI

k

n ~10 ==
∂

∂
(B-3)

(B-2)
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Ritz Method

• Equation (B-3) is linear equations for a1-an.
• If this solutions is applied to equation (B-2), 

approximate solution, which satisfies Euler equation 
(B-1), is obtained.
– Approximate solution, but stationalizes I(u) strictly 

• This type of method using a set of coefficients a1-an is 
called “Ritz Method”.



FEM-intro 56

Approx. by Variational Method (3/4)

• Ritz Method, n=2
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Supplementation for (3/4) (1/3)

• Ritz Method, n=2
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Supplementation for (3/4) (2/3)
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Supplementation for (3/4) (3/3)
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Approx. by Variational Method (4/4)

• Final linear equations are as follows:
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• This result is identical with that of Galerkin Method
– NOT a coincidence !!
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Galerkin Method
• Weighting functions (which satisfy u=0@x=0,1), 

Residual:

• Results: 
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Ritz Method & Galerkin Method (1/4)
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Ritz Method & Galerkin Method (2/4)
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Ritz Method & Galerkin Method (3/4)
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Ritz Method & Galerkin Method (4/4)

• This example is a very special case. But, generally 
speaking, results of Galerkin method and Ritz 
method agree, if functional exists.

• Although Ritz method provides approx. solution, that 
satisfies Euler equation in strict sense. Therefore, 
solution of Ritz method is closer to exact solution.
– This is the main reason that Galerkin method is accurate.

• Please just remember this.

• This relationship between Ritz and Galerkin is not 
correct if functional does not exist.
– In these cases, Galerkin method is not necessarily the 

best method from the viewpoint of accuracy and 
robustness.




