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FDM and FEM

• Numerical Method for solving PDE’s

– Space is discretized into small pieces (elements, meshes)

• PDE: Partial Differential Equation(s) 偏微分方程式

• Finite Difference Method (FDM)（有限）差分法

– Differential derivatives are directly approximated using 

Taylor Series Expansion.
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Finite Difference Method (FDM)
Taylor Series Expansion
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6

Finite Difference Method (FDM)

（有限）差分法：巨視的微分
macroscopic differentiation
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FEM1D 7

2nd Order Differentiation in FDM
Taylor Series Expansion

• Approximate Derivative at × (center of i and i+1)
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1D Heat Conduction

• Linear Equation at Each Grid Point 
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FDM and FEM

• Numerical Method for solving PDE’s

– Space is discretized into small pieces (elements, meshes)

• PDE: Partial Differential Equation(s) 偏微分方程式

• Finite Difference Method (FDM)（有限）差分法

– Differential derivatives are directly approximated using 

Taylor Series Expansion.

• Finite Element Method（FEM）有限要素法

– Solving “weak form” derived from integral equations.

• “Weak solutions” are obtained.

– Method of Weighted Residual (MWR), Variational Method 

– Suitable for Complicated Geometries

• Although FDM can handle complicated geometries ...
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FDM can handle complicated 
geometries: BFC

Handbook of Grid Generation
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History of FEM
• In 1950’s, FEM was originally developed as a method 

for structure analysis of wings of airplanes under 

collaboration between Boeing and University of 

Washington (M.J. Turner, H.C. Martin etc.).

11

– “Beam Theory” 
cannot be 

applied to 

sweptback wings 

for airplanes with 

jet engines.   



History of FEM
• In 1950’s, FEM was originally developed as a method 

for structure analysis of wings of airplanes under 

collaboration between Boeing and University of 

Washington (M.J. Turner, H.C. Martin etc.).

– “Beam Theory” cannot be applied to sweptback wings for 

airplanes with jet engines.   

• Extended to Various Applications

– Non-Linear: T.J.Oden

– Non-Structure Mechanics: O.C.Zienkiewicz

• Commercial Package

– NASTRAN

• Originally developed by NASA

• Commercial Version by MSC

• PC version is widely used in industries
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Recent Research Topics

• Non-Linear Problems

– Crash, Contact, Non-Linear Material

– Discontinuous Approach

• X-FEM

• Parallel Computing

– also in commercial codes

• Adaptive Mesh Refinement (AMR)

– Shock Wave, Separation

– Stress Concentration

– Dynamic Load Balancing (DLB) at Parallel Computing

• Mesh Generation

– Large-Scale Parallel Mesh Generation

13FEM-intro



3D Simulations for Earthquake 
Generation Cycle

San Andreas Faults, CA, USA
Stress Accumulation at Transcurrent Plate Boundaries

Adaptive Mesh Refinement (AMR)
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Adaptive FEM: High-resolution needed at 
meshes with large deformation (large 

accumulation)

15
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• Numerical Method for PDE (Method of Weighted 

Residual)

• Gauss/Green’s Theorem

• Numerical Method for PDE (Variational Method)
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Approximation Method for PDE
Partial Differential Equations: 偏微分方程式

• Consider solving the following differential 
equation (boundary value problem), domain V, 

boundary S :

fuL =)(

• u (solution of the equation) can be approximated 

by function uM (linear combination)

i

M

i

iM au Ψ=
=1

iΨ

ia

Trial/Test Function （試行関数）(known 
function of position, defined in domain and 

at boundary. “Basis” in linear algebra.

Coefficients (unknown)
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Method of Weighted Residual 

MWR: 重み付き残差法

• uM is exact solution of u if R (residual：残差)= 0: 

fuLR M −= )(

• In MWR, consider the condition where the following 
integration of R multiplied by w (weight/weighting 

function：重み関数) over entire domain is 0

0)( =
V

M dVuRw

• MWR provides “smoothed” approximate solution, 
which satisfies R=0 in the domain V
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Method of Weighted Residual 

MWR: 重み付き残差法

• uM is exact solution of u if R (residual：残差)= 0: 

fuLR M −= )(

• In MWR, consider the condition where the following 
integration of R multiplied by w (weight/weighting 

function：重み関数) over entire domain is 0

0)( =
V

M dVuRw

• MWR provides “smoothed” approximate solution, 
which satisfies R=0 in the domain V

R
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Variational Method (Ritz) (1/2)

変分法
• It is widely known that functional I(u) exists in many 

problems, and that the exact solution u of the problem 

provides extreme values (max/min) of I(u) ：汎関数” 

– Euler equation: differential equation satisfied by u, if 

functional has extreme values（極値）

– Euler eq. is satisfied by u, if u provides extreme values of I(u).

– provide extreme values：停留させる（or stationarize）

• For example, functional, which corresponds to 

governing equations of linear elasticity (principle of 

virtual work, equilibrium equations), is “principle of 
minimum potential energy (principle of minimum strain 

energy)（エネルギー最小，歪みエネルギー最小）” .
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Variational Method (Ritz) (2/2)

変分法

i

M

i

iM au Ψ=
=1

• Substitute the following approx. solution into I(u), 

and calculate coefficients ai under the condition 

where IM=I(uM) provides extreme values, then uM

is obtained:

• Variational method is theoretical method, and 

can be only applied to differential equations, 

which has equivalent variational problem.

– In this class, we mainly use MWR

– Brief overview of Ritz method will be given later in this
material.
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Finite Element Method (FEM)

有限要素法
• Entire region is discretized into fine 

elements（要素）, and the following 
approximation is applied to each 

element: 

i

M

i

iM au Ψ=
=1

• MWR or Variational Method is applied to each 

element

• Each element matrix is accumulated to global 

matrix, and solution of obtained linear equations 

provides approx. solution of PDE.

• Details of FEM will be provided in the next material.
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Example of MWR (1/3)

• Thermal Equation

0
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Example of MWR (2/3)

• Multiply weighting function wi, and apply integration 

over V: 

0= dVRw

V

i

• If a set of weighting function wi is a set of n

different functions, the above integration provides 
a set of n linear equations:

• # trial/test functions = # weighting functions  
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Example of MWR (3/3)

• Matrix form of the equations is described 

as follows: 

[ ]{ } { }QaB =

dVQwQdV
yx

wB
V

ii

jj

V

iij  −=
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λ

Actual approach is slightly different from this

(more detailed discussions in the next material)
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Various types of MWR’s

• Various types of weighting functions

• Collocation Method 選点法

• Least Square Method 最小自乗法

• Galerkin Method ガラーキン法
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Collocation Method

• Weighting function: Dirac’s Delta Function δ

( )
i

xx −= δiw x：location

• In collocation method, R (residual) is set to 0 at n

collocation points by feature of Dirac’s Delta Fn. δ : 

( )
ixxi

xx ==− |RdVR

V

δ

( )

( ) ( )
∞+

∞−
=≠=

=∞=

1,00

0

dzzzifz

zifz

δδ

δ
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Least Square Method

• Weighting function: 

i

i
a

R
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Galerkin Method

• Weighting Function = Test/Trial Function: 

iiw Ψ=

• Galerkin, Boris Grigorievich

– 1871-1945

– Engineer and Mathematician of Russia

– He got a hint for Galerkin Method while 

he was imprisoned because of anti-

czarism (1906-1907).
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Example (1/2)

• Governing Equation 

)10(0
2

2

≤≤=++ xxu
dx

ud

• Boundary Conditions: Dirichlet

0@0 == xu

1@0 == xu

• Exact Solution

x
x

u −=
1sin

sin
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Exact Solution x
x

u −=
1sin

sin

0

0.02

0.04

0.06

0.08

0.00 0.25 0.50 0.75 1.00

x

u
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Example (2/2)

• Assume the following approx. solution: 

22112
2

121 )1()1())(1( Ψ+Ψ=−+−=+−= aaaxxaxxxaaxxu

• Residual is as follows: 

)1(),1( 2
21 xxxx −=Ψ−=Ψ

2
32

1
2

21 )62()2(),,( axxxaxxxxaaR −+−+−+−+=

• Let’s apply various types of MWR to this equation

– We have two unknowns (a1, a2), therefore we need two 

independent weighting functions.

Test/trial function satisfies u=0@x=0,1
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Collocation Method

• n=2，x=1/4，x=1/2 for collocation points:

• Solution:
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Least Square Method
• Weighting functions, Residual:

• Solution:
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Galerkin Method
• Weighting functions, Residual:

• Results: 
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Results

• Galerkin Method provides the most accurate solution

– If functional exists, solutions of variational method and 

Galerkin method agree.

• A kind of analytical solution (later of this material)

• Many commercial FEM codes use Galerkin method.

• In this class, Galerkin method is used.

• Least-square may provide robust solution in Navier-

Stokes solvers for high Re.

X Analytical
Collocation

0.25-0.50
Collocation

0.33-0.67
Least-
Square

Galerkin

0.25 0.04401 0.04493 0.04462 0.04311 0.04408

0.50 0.06975 0.07143 0.07031 0.06807 0.06944

0.75 0.06006 0.06221 0.06084 0.05900 0.06009
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Homework (1/2)

• Apply the following two method in the next page to 

the same equations:

– Method of Moment

– Sub-Domain Method

– Results at x=0.25, 0.50, 0.75

• Compare the results of “collocation method” on 

“non-collocaion points” with exact solution

– Explain the behavior 

– Try different collocation points
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Homework (2/2)

• Method of Moment（モーメント法）

)1(1 ≥= −
iw

i

i x

– Weighting functions ?

• Sub-Domain Method（部分領域法）

– Domain V is divided into sub-domains Vi 

(i=1-n), and weighting functions wi are 

given as follows:





=
0

1
iw

for points in Vi

for points out of Vi

– Two unknowns, two sub 
domains

– Two sub-domains do not share 

any overlaps 0 1

1

1

0 1

1w

2w
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• Numerical Method for PDE (Method of Weighted 

Residual)

• Gauss/Green’s Theorem

• Numerical Method for PDE (Variational Method)
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Gauss’s Theorem

( )dSWnVnUndV
z
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


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



∂

∂
+

∂

∂
+

∂

∂

• 3D （x,y,z）

• Domain V surrounded by smooth closed 
surface S

• 3 continuous functions defined in V :

– U(x,y,z)，V(x,y,z)，W(x,y,z)

• Outward normal vector n on surface S: 

– nx，ny，nz: direction cosine

V

S
n
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Green’s Theorem (1/2)
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Green’s Theorem (2/2)

• (cont.)

• Finally:
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• Appears often after next class

– From 2nd order differentiation to 1st order differentiation. 

Gradient of B to the direction of normal vector
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In Vector Form

• Gauss’s Theorem

• Green’s Theorem

dSdV
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SV
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• Numerical Method for PDE (Method of Weighted 

Residual)

• Gauss/Green’s Theorem

• Numerical Method for PDE (Variational Method)
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Variational Method (Ritz) (1/2)

変分法
• It is widely known that functional I(u) exists in many 

problems, and that the exact solution u of the problem 

provides extreme values (max/min) of I(u) ：汎関数” 

– Euler equation: differential equation satisfied by u, if 

functional has extreme values（極値）

– Euler eq. is satisfied by u, if u provides extreme values of I(u).

– provide extreme values：停留させる（or stationarize）

• For example, functional, which corresponds to 

governing equations of linear elasticity (principle of 

virtual work, equilibrium equations), is “principle of 
minimum potential energy (principle of minimum strain 

energy)（エネルギー最小，歪みエネルギー最小）” .
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Variational Method (Ritz) (2/2)

変分法

i

M

i

iM au Ψ=
=1

• Substitute the following approx. solution into I(u), 

and calculate coefficients ai under the condition 

where IM=I(uM) provides extreme values, then uM

is obtained:

• Variational method is theoretical method, and 

can be only applied to differential equations, 

which has equivalent variational problem.

– In this class, we mainly use MWR

– Brief overview of Ritz method will be given.
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Application of Variational Method (1/5)
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• Consider the following integration I(u) in 2D-domain 

V, where u(x,y) is unknown function of x and y:

S

V

• I(u) is “functional（汎関数）” of function u

• u* is a twice continuously differentiable function and 

minimizes I(u). η is an arbitrary function which 

satisfies η=0 at boundary S, and α is a parameter. 
Consider the following equation:  

Q: known value

0=u at boundary S

( ) ( ) ( )yxyxuyxu ,,, * ηα ⋅+=
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Application of Variational Method (2/5)

( ) ( )*
uIuI ≥

• At this stage, the following condition is necessary

（必要条件）:
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• Assume that functional I(u*+αη) is a function of α. 

Functional I provides minimum value, if α=0. 

Therefore, the following equation is obtained:

• According to the definition of functional I(u), 

following equation is obtained (next page)
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Application of Variational Method (3/5)

• Apply Green’s theorem on 1st and 2nd term of LHS, 

and apply integration by parts, then following 

equation is obtained:（A=η, B=u*）(next page) ：

• At boundary S, η=0: 
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• (A) is required, if the above is true for arbitrary η
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Green’s Theorem

• （A=η, B=u*）：
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Application of Variational Method (4/5)

• Equation (A) is called “Euler equation”

– Necessary condition （必要条件）of u*, which minimizes 
functional I(u), is that u* satisfies the Euler equation.

• Sufficient condition（十分条件）

– Assume that u* is solution of the Euler equation and αη=δu*
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Application of Variational Method (5/5)

• It has been proved that u* (solution of Euler equation) 

minimizes functional I(u).

( ) ( )***
uIuuI ≥+δ

• Therefore, boundary value problem by Euler equation 

(A) with B.C. (u=0@S) is equivalent to variational 

problem.

– Solving equivalent variational problem provides solution of 

Euler equation (Poisson’s equation/Heat Conduction 

Equation in this case)

– Functional must exist !

*
u
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Approx. by Variational Method (1/4)

• Functional

( ) dxxuu
dx

du
uI 
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• Boundary Condition

0@0 == xu

1@0 == xu

• Obtain u, which “stationalizes” functional I(u) under 

this B.C.

– Corresponding Euler equation is as follows (same as 

equation in p.21):
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≤≤=++ xxu
dx

ud (B-1)
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Approx. by Variational Method (2/4)

• Assume the following test function with n-th order for 

function u, which is twice continuously differentiable:

( ) ( )12
3211 −++++⋅−⋅= n

nn xaxaxaaxxu ⋯

• If we increase the order of test function, un is closer 

to exact solution u. Therefore, functional I(u) can be 

approximated by I(un):

– If I(un) stationarizes, I(u) also stationarizes.

• We need to obtain set of unknown coefficients ak, 

which satisfies the following stationary condition:

( ) ( )nk
a
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k

n ~10 ==
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(B-3)

(B-2)
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Ritz Method

• Equation (B-3) is linear equations for a1-an.

• If this solutions is applied to equation (B-2), 

approximate solution, which satisfies Euler equation 

(B-1), is obtained.

– Approximate solution, but stationalizes I(u) strictly 

• This type of method using a set of coefficients a1-an is 

called “Ritz Method”.
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Approx. by Variational Method (3/4)

• Ritz Method, n=2

( ) ( ) ( ) ( ) 2
2

1212 111 axxaxxxaaxxu ⋅−⋅+⋅−⋅=+⋅−⋅=

( )
=

∂

∂
0

1

2

a

uI ( )( )

( )( ) ( ){ } ( ) 0113221

311

1

0

2
2

1

0

232

1

1

0

22

=−+







−−−−+









+−−−





dxxxadxxxxxx

adxxxxx

( )
=

∂

∂
0

2

2

a

uI ( )( ) ( ){ }

( )( ) ( ) 012232

13221

1

0

3
2

1

0

3232

1

1

0

232

=−+







−−+−+









−−−−





dxxxadxxxxxxx

adxxxxxx



FEM-intro 58

Supplementation for (3/4) (1/3)

• Ritz Method, n=2
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Supplementation for (3/4) (2/3)
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Supplementation for (3/4) (3/3)
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Approx. by Variational Method (4/4)

• Final linear equations are as follows:
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• This result is identical with that of Galerkin Method

– NOT a coincidence !!
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Galerkin Method
• Weighting functions (which satisfy u=0@x=0,1), 

Residual:

• Results: 
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Ritz Method & Galerkin Method (1/4)
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Ritz Method & Galerkin Method (2/4)
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Ritz Method & Galerkin Method (3/4)
( )

=
∂

∂
0

1

2

a

uI

( ) 0
1

0

221122
2

2

12
1

2

1 =








+++







+−  dxxawawa

dx

wd
a

dx

wd
w

0
1

0

22
2

2

1 =









++−  dxxu

dx

ud
w

( )
=

∂

∂
0

2

2

a

uI

( ) 0
1

0

221122
2

2

12
1

2

2 =








+++







+−  dxxawawa

dx

wd
a

dx

wd
w

0
1

0

22
2

2

2 =









++−  dxxu

dx

ud
w

Galerkin Method !!

0
2

2

=++ xu
dx

ud

2211 wawau +=



FEM-intro 66

Ritz Method & Galerkin Method (4/4)

• This example is a very special case. But, generally 

speaking, results of Galerkin method and Ritz 

method agree, if functional exists.

• Although Ritz method provides approx. solution, that 

satisfies Euler equation in strict sense. Therefore, 

solution of Ritz method is closer to exact solution.

– This is the main reason that Galerkin method is accurate.

• Please just remember this.

• This relationship between Ritz and Galerkin is not 

correct if functional does not exist.

– In these cases, Galerkin method is not necessarily the 

best method from the viewpoint of accuracy and 

robustness.


