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FDM and FEM

* Numerical Method for solving PDE’s

— Space is discretized into small pieces (elements, meshes)
- PDE: Partial Differential Equation(s) R AR

» Finite Difference Method (FDM) (FR) Z4i%

— Differential derivatives are directly approximated using
Taylor Series Expansion.
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Finite Difference Method (FDM)
Taylor Series Expansion
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Finite Difference Method (FDM)
(BMR) Z57%: BRI

macroscopic differentiation

(@j ~ ¢i+1 - ¢z
dx )1/ Ax

0,
(d_¢j — lim ¢i+1 _¢i (I)i+l
dx )i, A0 Ax -

i i+1/2 i+
Ax




FEM1D

2"d Order Differentiation in FDM

Taylor Series Expansion

- Approximate Derivative at X (center of i and i+7)
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1D Heat Conduction

« 2nd.Order Central Difference

(CM) _(CMJ ¢i+1_¢i ¢i_¢i—1
(d2¢j \dx )iy, \dx ), Ax j Ax  _9.—20+9
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« Linear Equation at Each Grid Point
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FDM and FEM

* Numerical Method for solving PDE’s

— Space is discretized into small pieces (elements, meshes)
- PDE: Partial Differential Equation(s) {5 AR

» Finite Difference Method (FDM) (FR) Z4i%

— Differential derivatives are directly approximated using
Taylor Series Expansion.

 Finite Element Method (FEM) BIRE# %

— Solving “weak form” derived from integral equations.
« “Weak solutions” are obtained.

— Method of Weighted Residual (MWR), Variational Method

— Suitable for Complicated Geometries
 Although FDM can handle complicated geometries ...
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FDM can handle complicated

geometries: BFC
Handbook of Grid Generation

Computational Domain Physical Domain

O.LD) (LL1)

(0,0,1) (10.1) x(&ng)

P

(1,1,0)

(0,1,0)

(0,0,0) (1,0,0)

' X

FIGURE3.1 Transformation between computational and physical domains.

FIGURE 3.2 Grids in computational and physical domains.



History of FEM

* In 1950’s, FEM was originally developed as a method
for structure analysis of wings of airplanes under
collaboration between Boeing and University of
Washington (M.J. Turner, H.C. Martin etc.).

— “Beam TheOry” Straight Wing: Subsonic
Beam Theory for Calc. of Load
cannot be at the Base of Wings,
applied to O ——==F
sweptback wings
for airplanes with

jet engines.

Boeing 747-100

- Swept Wing: Transonic-Supersonic
Beam Theory cannot be applied

11



History of FEM

» Extended to Various Applications
— Non-Linear: T.4J.Oden
— Non-Structure Mechanics: O.C.Zienkiewicz

« Commercial Package

— NASTRAN
 QOriginally developed by NASA
« Commercial Version by MSC
« PC version is widely used in industries

12
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Recent Research Topics

Non-Linear Problems
— Crash, Contact, Non-Linear Material
— Discontinuous Approach
« X-FEM
Parallel Computing
— also in commercial codes

Adaptive Mesh Refinement (AMR)

— Shock Wave, Separation
— Stress Concentration
— Dynamic Load Balancing (DLB) at Parallel Computing

Mesh Generation
— Large-Scale Parallel Mesh Generation

13
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3D Simulations for Earthquake
Generation Cycle
an Andreas Faults, CA, USA

Stress Accumulation at Transcurrent Plate Boundaries
Adaptive Mesh Refinement (AMR
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* Numerical Method for PDE (Method of Weighted
Residual)

« Gauss/Green’s Theorem
* Numerical Method for PDE (Variational Method)
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Approximation Method for PDE
Partial Differential Equations: g7 A5 2

« Consider solving the following differential
equation (boundary value problem), domain V,
boundary S :

L(u)=f

* u (solution of the equation) can be approximated
by function u,, (linear combination)

M
Y = Z a ¥ W Trial/Test Function (3%17B3%0) (known
M I l . .ps . . .
- function of position, defined in domain and
- at boundary. “Basis” in linear algebra.

l

d;  Coefficients (unknown)
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Method of Weighted Residual
MWR: EHfTEREE

* u,,is exact solution of u if R (residual : ¥%Z)= 0:
R :L(MM)_f
* In MWR, consider the condition where the following

integration of R multiplied by w (weight/weighting
function : E&BH%K) over entire domain is 0

ij(uM)dV:o

« MWR provides “smoothed” approximate solution,
which satisfies R=0 in the domain V
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Method of Weighted Residual
MWR: EHfTEREE

* u,,is exact solution of u if R (residual : ¥%Z)= 0:
RA

R=L(u,)-
(uy )= f vav>

* In MWR, consider the condition where the following
integration of R multiplied by w (weight/weighting
function : E&BH%K) over entire domain is 0

ij(uM)dV:o

« MWR provides “smoothed” approximate solution,
which satisfies R=0 in the domain V
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Variational Method (Ritz) (1/2)
%553k
* |t is widely known that functional I(u) exists in many
problems, and that the exact solution u of the problem

provides extreme values (max/min) of I(u) : FLEA%L”

— Euler equation: differential equation satisfied by u, if
functional has extreme values (#B{#&)

— Euler eq. is satisfied by u, if u provides extreme values of I(u).
— provide extreme values : {58 &t % (or stationarize)

* For example, functional, which corresponds to
governing equations of linear elasticity (principle of
virtual work, equilibrium equations), is “principle of
minimum potential energy (principle of minimum strain
energy) (IRILF—ix/, EHIRILT—]R/IN) 7.
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Variational Method (Ritz) (2/2)
%535k

« Substitute the following approx. solution into I(u),
and calculate coefficients a;, under the condition
where [,,=1I(u,,) provides extreme values, then u,,

IS obtained:
M
U, = Zai‘{’i
i=1
» Variational method is theoretical method, and
can be only applied to differential equations,
which has equivalent variational problem.
— In this class, we mainly use MWR
— Brief overview of Ritz method will be given later in this
material.

21
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Finite Element Method (FEM)
BRZRIE

Entire region is discretized into fine —
elements (£3) , and the following “”""’"""i”’iéa‘*;;ﬁ
approximation is applied to each |
element:
U, = Zai‘l’i
i=1

MWR or Variational Method is applied to each
element

Each element matrix is accumulated to global
matrix, and solution of obtained linear equations
provides approx. solution of PDE.

Details of FEM will be provided in the next material.
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Example of MWR (1/3)

« Thermal Equation

0°’T 9°T .
A +0=0 InV
[8)62 * ayzj ¢

A:Conductivity, O:Heat Gen./Volume
T =0 at boundary S

* Approximate Solution
TzZaj‘Pj
» Residual
n °Y. 97V,
R(aj,x,y)=12aj£ L+ ])+Q

23
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Example of MWR (2/3)

» Multiply weighting function w;, and apply integration
over V:

IwiRdeO
Vv

» |f a set of weighting function w. is a set of n
different functions, the above integration provides
a set of n linear equations:

* # trial/test functions = # weighting functions
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Example of MWR (3/3)

« Matrix form of the equations is described

as follows:
[BRa}=1{0}
'Y, 0"Y, -
B, =‘J;wi/1[ " + 3y JdV, Ql.——‘_[wiQdV

Actual approach is slightly different from this
(more detailed discussions in the next material)

25
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Various types of MWR's

 Various types of weighting functions

 Collocation Method
» Least Square Method
e Galerkin Method

2
BNERE
HS—% Uik

26
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Collocation Method

« Weighting function: Dirac’s Delta Function o

S(z)=c if z=0 i
5(z)=0 if z=#0, f:é'(z)dzzl
W, = 5(X—Xi) x :location _'Tr

* |n collocation method, R (residual) is set to 0 at n
collocation points by feature of Dirac’s Delta Fn. o:

JR5(X—Xi)dVZR|x:xi 5§X—Xi%=°°al‘xzxi
’

o(x—x,)=0atx#x,

 |If nincreases, R approaches to 0 over entire
domain.

27
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Least Square Method

« Weighting function:
OR
W, =—_—
" da,

« Minimize the following integration according to «,

(unknowns):

I(a)= j [R(a,,x)} av

—[I<a )= 2j Ria, ) XX
ai

.

R(a,,x)

dV =0

OR(a.,X)

a;

dV =0

<
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Galerkin Method

« Weighting Function = Test/Trial Function:

w, =¥,

« Galerkin, Boris Grigorievich
— 1871-1945
— Engineer and Mathematician of Russia

— He got a hint for Galerkin Method while
he was imprisoned because of anti-
czarism (1906-1907).

29
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Example (1/2)

« Governing Equation
d’u

2

+u+x=0 (0<x<))
dx

« Boundary Conditions: Dirichlet
u=0@x=0
u=0@x=1

 Exact Solution

Sin X
u:

- —X
sin 1

30
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_ SIN X
Exact Solution u=— X
sin 1
0.08 _
0.06 -

0.02 |
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Example (2/2)

« Assume the following approx. solution:
u=x(1-x)(a, +a,x)=x(1-x)a, + x*(1- x)a, =a,'¥, +a,¥,
¥ =x(1-x), ¥,=x"(1-x)

Test/trial function satisfies u=0@x=0, 1

« Residual is as follows:

R(a,,a,, x) =x+(—2+x—xz)a1 +(2—6x+x" —x3)a2

* Let's apply various types of MWR to this equation

— We have two unknowns (a,, a,), therefore we need two
iIndependent weighting functions.

32
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Collocation Method

« n=2, x=1/4, x=1/2 for collocation points:

R(al,az,i) =(), R(al,az,%) =0

R(a,,a,, x) =x+(—2+x—x2)az1 +(2—6x+x" —x?’)a2

» Solution:
29/16 —35/641(a,] [1/4 ' 6
= a. = —
{7/4 7/8 Haz} {1/2} L3l
_x(l—=x)

(42+40x)

u
217

33
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Least Square Method

« Weighting functions, Residual:

OR OR
W, =—o—=-24+x—X", W,= =2—-6x+x"—x
da, da,
R(al,aZ,x)=x+(—2+x—x2)a1+(2—6x+x2—x3)a2
« Solution:

1 1
IR(al,az,x)a—RdxzIR(al,az,x)(—2+x—x2) dx =0
0 oa 0

1

1 1
IR(al,az,x)a—Rdx:IR(al,az,x)(2—6x+x2—x3)dx:0
0 aa2 0
202 101 |(aq 55 46161 41713
— a, = , adA, =
{707 1572}{%} {399} - ' 2461377 7 246137
0= U9 46161+41713%)

246137
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Galerkin Method

« Weighting functions, Residual:
w =% =x(1-x), w,=%,=x"(1-x)

R(al,az,x)=x+(—2+x—x2)a1+(2—6x+x2—x3)a2
* Results:
1 1
jR(al,az,x)‘Pl dxsz(al,%,x)(x—xz) dx=0
0 0

1 1
jR(al,az,x)‘Pz abczJ‘R(azl,az,x)(x2 —x)dx=0
0 0

3/10  3/20 |[a,| ([1/12 ' 71
= a, =——,

{3/20 13/105}{%} {1/20} 1369
~x(l—x)
369

(71+63x)

U

a, =

7
41

35
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Results

X Analvtical Collocation | Collocation Least-
y 0.25-0.50 | 0.33-0.67 | Square

0.25 0.04401 0.04493 0.04462 0.04311 0.04408
0.50 0.06975 0.07143 0.07031 0.06807 0.06944
0.75 0.06006 0.06221 0.06084 0.05900 0.06009

Galerkin Method provides the most accurate solution

— |If functional exists, solutions of variational method and
Galerkin method agree.

« A kind of analytical solution (later of this material)

Many commercial FEM codes use Galerkin method.
In this class, Galerkin method is used.

Least-square may provide robust solution in Navier-
Stokes solvers for high Re.
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Homework (1/2)

* Apply the following two method in the next page to
the same equations:
— Method of Moment
— Sub-Domain Method
— Results at x=0.25, 0.50, 0.75

» Compare the results of “collocation method” on
“non-collocaion points” with exact solution
— Explain the behavior
— Try different collocation points

37
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Homework (2/2)
e Method of Moment (BE—X* > k%)

w,=x" (i21)

— Weighting functions ?

« Sub-Domain Method (&} $B18ii%)
— Domain Vs divided into sub-domains V,
(i=1-n), and weighting functions w. are W1 i 1
given as follows:
1 for points in V. !
{() for points out of V,

l

— Two unknowns, two sub
domains

— Two sub-domains do not share
any overlaps
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* Numerical Method for PDE (Method of Weighted
Residual)

« Gauss/Green’s Theorem
* Numerical Method for PDE (Variational Method)
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5

U BV BW

Gauss’s Theorem

ox

jdV jUn +Vn, +Wn_ ) dS
By 0z

3D (xy,2)
Domain V surrounded by smooth closed

surface S

3 continuous functions defined in V :
T U(X,y,Z), V(x,y,z), W(x,y,z)
Outward normal vector n on surface S:

—_ nxl

n

yl

n, direction cosine

¢

)

S
%
?

40
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Green’s Theorem (1/2)

e Assume the following functions:

Joad 0
ox dy 0z

e Thus :
oU oV oW A(azg 9°B 323}(%33 JA OB aAaBj

+—+ + +
ox 8y 0z ox>  dy> 97’ dx dx dy dy 0z oz

* Apply Gauss’s theorem:

2 2 2
J‘A8123+8€3+8€3 dV+I BABB+8ABB+8ABB v
ox~ dy° 0z dx dx dy dy 0dz 0z

J(Un +Vn, +Wn, dS jA[a—Bn +2—Bny+?)—Bn de
ox y Z

S
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Green’s Theorem (2/2)

e (cont.)

jA[a—Bn +a—Bny+a—Bn desz(aB Ox 9By, 0B az]dS

0z ox on dy an dz on
jAa—B dS B_B Gradient of B to the direction of normal vector
¢ on on
e Finally:

2 2 2
J‘A8123+8é3+8}3 dV:J‘Aa_BdS_J‘ aAaB+8AaB+8AaB IV
ox~ dy° 0z on *\dx dx dy dy dz oz

e Appears often after next class

— From 2Md order differentiation to 15t order differentiation.
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In Vector Form

e Gauss’s Theorem

jV-WdeijndS
1% S

e Green’s Theorem

j vAu dV = j (WWu) n dS - j (V') Vi) dv

Vv

43
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* Numerical Method for PDE (Method of Weighted
Residual)

« Gauss/Green’s Theorem
* Numerical Method for PDE (Variational Method)
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Variational Method (Ritz) (1/2)
%553k
* |t is widely known that functional I(u) exists in many
problems, and that the exact solution u of the problem

provides extreme values (max/min) of I(u) : FLEA%L”

— Euler equation: differential equation satisfied by u, if
functional has extreme values (#B{#&)

— Euler eq. is satisfied by u, if u provides extreme values of I(u).
— provide extreme values : {58 &t % (or stationarize)

* For example, functional, which corresponds to
governing equations of linear elasticity (principle of
virtual work, equilibrium equations), is “principle of
minimum potential energy (principle of minimum strain
energy) (IRILF—ix/, EHIRILT—]R/IN) 7.
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Variational Method (Ritz) (2/2)
%535k

« Substitute the following approx. solution into I(u),
and calculate coefficients a;, under the condition
where [,,=1I(u,,) provides extreme values, then u,,

IS obtained:
M
U, = Zai‘{’i
i=1
 Variational method is theoretical method, and
can be only applied to differential equations,
which has equivalent variational problem.
— In this class, we mainly use MWR
— Brief overview of Ritz method will be given.

46
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Application of Variational Method (1/5)

» Consider the following integration I(u) in 2D-domain
V, where u(x,y) iIs unknown function of x and y:

-

U(ouY (ou)
I(u):{[? (B_Zj +(a—Zj —20u

\

dV

4

Q: known value
u=0 atboundary S

 I(u)is “functional GRE8#1) ” of function u

e u*Is a twice continuously differentiable function and
minimizes I(u). nis an arbitrary function which
satisfies n=0 at boundary S, and o is a parameter.
Consider the following equation:

u(x,y)=u"(x, y)+a-nlx, y)

S
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Application of Variational Method (2/5)

At this stage, the following condition is necessary
(HEEH)
I(u)=1(")

» Assume that functional I(u"+an) is a function of «.
Functional I provides minimum value, if o=0.
Thearefore, the following equation is obtained:

@I(M +a-n - =0

» According to the definition of functional I(u),
following equation is obtained (next page)

Ju d0n du on
—0n v =0
;‘;E ox ox * dy dy and
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dV

P~
—_
~
N—
I
<<
N | —
TN
‘Q)
= | <
~
(\®]
_I_
ST
Q| QU
SIS
~
[\
I
\®)
Q
~

1(@)2}_31,1@(3“) ou_olu +a-n) ou”  an
2 b

ox da\ dx ox ox 0x ox

a
9 a_uj-a_ﬂ g=0= 2 i(a_uf 9wy 9 J1fou)|_au oy
da\ox) ox’ oo |2\ dx dx ox da |2\ a9y dy dy

du" on ou’ on )d
+ -Q0n dv=0
;[[ ox dx dy dy
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Application of Variational Method (3/5)

« Apply Green’s theorem on 1st and 2" term of LHS,
and apply integration by parts, then following
equation is obtained' (A=n, B=u*) (next page) :

au
j( y2 +Q}7dV+jn—dS 0

where du__ du n _|_8Ln Gradient of u* in the direction

on dx ~ dy ’ ofnormal vector

* At boundary S, n=0:

2 v o
j( . }mvo

* (A) Is required, if the above is true for arbitrary n

’u 82 '
0 (A
0 oy +0=0 (A)
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Green’s Theorem
« (A=7n, B=u¥*)

ou' on ou” 97 ]d
+ —Qn dv =
;[( ox dx dy dy
0 u 0ndu  onou
dV = —dS + dV
jn[@x dy’ j JU j(@x ox dy ayj

[ 91 du_, 97 Ju dv =1 Tu_ u dV+j77—dS
"\ dx ox dy dy o\ ox dy
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Application of Variational Method (4/5)

« Equation (A) is called “Euler equation”

— Necessary condition (WESEH) of u*, which minimizes
functional I(u), is that u* satisfies the Euler equation.

- Sufficient condition (+%54)
— Assume that u"is solution of the Euler equation and an=du"

(% +5u*)—1(u*)= | |
I il

ol=0 O’=0
First Variation Second Variation
E—EH E-EH
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Application of Variational Method (5/5)

* |t has been proved that «* (solution of Euler equation)
minimizes functional I(u).

53

I +60)= 1)

» Therefore, boundary value problem by Euler equation
(A) with B.C. (u=0@3S) is equivalent to variational
problem.

— Solving equivalent variational problem provides solution of
Euler equation (Poisson’s equation/Heat Conduction
Equation in this case)

— Functional must exist !
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Approx. by Variational Method (1/4)

 Functional

1 2 )
I(u)=j< l(duj —lu2 — XU pdx

- 12\ dx 2

.

» Boundary Condition
u=0@x=90
u=0@x=1

* Obtain u, which “stationalizes” functional I(ux) under
this B.C.

— Corresponding Euler equation is as follows (same as
equation in p.21):

2
d’;‘+u+x:0 (0<x<1) (B-1)
dx
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Approx. by Variational Method (2/4)

* Assume the following test function with n-th order for
function u, which is twice continuously differentiable:

u :x-(l—x)-(a1 +a,x+a,x’ +---+anx”_1) (B-2)

» |f we increase the order of test function, «, is closer
to exact solution u. Therefore, functional I(u) can be
approximated by I(u, ):

— If I(u,) stationarizes, I(u) also stationarizes.

* We need to obtain set of unknown coefficients q,,
which satisfies the following stationary condition:

da,

=0 (k=1~n) (B-3)
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Ritz Method

Equation (B-3) is linear equations for a;-a,.

If this solutions is applied to equation (B-2),
approximate solution, which satisfies Euler equation
(B-1), is obtained.

— Approximate solution, but stationalizes I(u) strictly

This type of method using a set of coefficients a;-a, IS
called “Ritz Method”.



Approx. by Variational Method (3/4)
* Ritz Method, n=2

U, =x-(1—x)-(a1 +a2x)=

ol (i)
da,

ol (uz )
da,

0=

0=

1 X— xXl 3x+x )alxa1

(1-2x) 2x 3x — (l—x)z}dx a,

j. 2x—3x +x )(2x—2x2—x3)dx
0

x-(l—x)-a1+x2 -(l—x)-a2

1
a, +jx2(1—x)dx=0

1
a2+jx3(1—x)dx:0



Supplementation for (3/4) (1/3)

e Ritz Method, n=2

w, =x-(1-x)-(a, +a,x)=x-(1-x)-a, +x* - (1-x)-a,

r

1 2 )
I(M)ZJ-< l(@j —lu2 — xu pdx
g dx )

2 2

.

1(du) 1 ,
—|— | ——u" —xu=
2\ dx 2

%:(1—2)6)611 +(2x—3x2)az]2 _%[x'(l—x)'al +x° '(1—36)'“2]2

:xz -(l—x)-a1 + X -(l—x)-az]



Supplementation for (3/4) (2/3)

1(duY 1 5
—| — | ——u"—xu=
2\ dx 2

1
)

(1= 2x)a, + (2x—3x)a, [ -

x” '(1—)6)'611 + X -(1—x)-a2]

o) _,
da,
j{l 2x) - x)z}dx a,
01 _
+ j{l 2x) 2x 3x — -(l—x)z}dx
[ 0

%[X-(l—x)-aﬁxz .(1—x)-a2]

2

az—sz (1-x)dx=0



Supplementation for (3/4) (3/3)

l(dujz 1 2
—|— | ——u"—xu=
2\ dx 2
Sl1-20)a,+ e-30)o.f Zle-(1-x)-, 457 (1-)-a.
—-xz-(1—x)-a1+x3-(1—x)~a2]

2

ol (u,)
da,

=0=

y _
j{l 2x 2x 3x — -(l—x)z}dx a,
| 0

+ j{ x)z}dx_az—j-x3-(l—x)dx=0

0
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Approx. by Variational Method (4/4)

* Final linear equations are as follows:

3/10 3/20 ||a 1/12 71 7

= - ay=_—=> ==

{3/20 13/105}{%} {1/20} 369 41

~_x(l=x)
369

u (714 63x)

 This result is identical with that of Galerkin Method
— NOT a coincidence !!
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Galerkin Method

» Weighting functions (which satisfy u=0@x=0,1),
Residual:
w =% =x(1-x), w,=%,=x>(1-x)
R(a,,a,,x)=x+(-2+x—x")a, +(2—6x+x’—x")a,

* Results:
1 1
JR(al,az,x)‘Pl dxsz(al,az,x)(x—xz) dx=0
0 0

1 1
JR(al,az,x)‘Pzdxsz(al,az,x)(xz—x3)dx=0
0 0
3/10  3/20 ||q, 1/12 71

— a=——, d, =
{3/20 13/105}{%} {1/20} - ' 3697 7
~x(l—=x)

369

(71+63x)

U

7

62
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Ritz Method & Galerkin Method (1/4)

U =X -(1—x)-(a1+a2 )—a1w1+a2W2
1 '1(@2)2 du, 2 (duzj (a i, dwzjdwl
.([ ( j——u e da, | 2\ dx ~dx da,\ d dx dx ) dx
8 _1 2 al/t
S | AU } '—2:(a1w1+a2w2)-w1
da, | 2 da,
ol (u 9 du, _
( 2):0:> » xu, | = x- %, X W,
da,
! dw, ) dw, dw | T |
I (—lj a, +——=a, pdx |— jwl{(w1a1+w2a2)+x}dx =0
|\ dx dx dx g
ol
(u2):O:>
da,
| rdw dw dw, )’ | T |
I< L—Z2a, +| —=| a, pdx |— jwz{(w1a1+w2a2)+x}dx =0
| dx dx dx k |
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Ritz Method & Galerkin Method (2/4)

! dw, dw, dw E
I{(_lj a, + 1 2 a, }dx — J.Wl {(wlal + w2a2)+ x}dx =0

O —

i(w dwlj_ dw, dw, y d’w,

Wl — \Pl — X(I_X), ox I dx dx dx 1 dx>

w, =¥, = x*(1-x) O, dwy\_dw dw, d*w,
ox\ | dx dx dx b di?
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Ritz Method & Galerkin Method (3/4)

aI(uZ)—O: d L2l+u+x=0
da, dx
1 ) 5 u=aw +a,w,
d-w, d-w,
—\w a, + a, |[+wa +w,a,)+xrdx=0
_([ 1{[ dX2 1 dX2 2] ( 11 2 2) }

Galerkin Method !!
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Ritz Method & Galerkin Method (4/4)

* This example is a very special case. But, generally
speaking, results of Galerkin method and Ritz
method agree, if functional exists.

 Although Ritz method provides approx. solution, that
satisfies Euler equation in strict sense. Therefore,
solution of Ritz method is closer to exact solution.
— This is the main reason that Galerkin method is accurate.

» Please just remember this.

 This relationship between Ritz and Galerkin is not
correct if functional does not exist.
— In these cases, Galerkin method is not necessarily the

best method from the viewpoint of accuracy and
robustness.
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