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FDM and FEM

 Numerical Method for solving PDE’s
— Space Is discretized into small pieces (elements, meshes)
« PDE: Partial Differential Equation(s) g7 A2
 Finite Difference Method (FDM) (BE) Z4i%

— Differential derivatives are directly approximated using
Taylor Series Expansion.

e Finite Element Method (FEM) HEEXR%

— Solving “weak form” derived from integral equations.
* “Weak solutions” are obtained.

— Method of Weighted Residual (MWR), Variational Method

— Suitable for Complicated Geometries
« Although FDM can handle complicated geometries ...
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FDM can handle complicated

geometries: BFC
Handbook of Grid Generation
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FIGURE 3.2 Grids in computational and physical domains.
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Taylor Series Expansion
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Finite Difference Method (FDM)
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Finite Difference Method (FDM)
(BIR) E=57i%  BFRWMS

macroscopic differentiation
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2"d Order Differentiation in FDM
Taylor Series Expansion

« Approximate Derivative at X (center of | and 1+1)

(] O, 1412 O; 1 (%j ~ Ra—H
(] —— O AX ;112 AX
Ax Ax o
Ax—-0: Real Derivative
P i-1/2 @, i41/2 Pii1
e 2nd-Order Diff. at | o > —-@
Ax Ax
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1D Heat Conduction

o 2nd_Qrder Central Difference

2 (dﬂ _(df”) Ga=%_ R~
M ~ X, \OX)iyp _  Ax A _Ra —20+q.,
dx AX AX e

* Linear Equation at Each Grid Point

G _szz"'%—l +BF({i)=0 @<i<N)

d°¢, oo _

ALl

A )x¢g,+A()xg +A(l)*xg,, =BF() (<i<N)

1

A(i):iﬂbm:—é,%a):y

_@,+BF({)=0 (I<i<N)
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History of FEM

* |In 1950’s, FEM was originally developed as a method
for structure analysis of wings of airplanes under
collaboration between Boeing and University of .
Washington (M.J. Turner, H.C. Martin etc.).

— “Beam Theory” cannot be applied to sweptback wings for
airplanes with jet engines.

e Extended to Various Applications

— Non-Linear: T.J.Oden
— Non-Structure Mechanics: O.C.Zienkiewicz

« Commercial Package

— NASTRAN
« Originally developed by NASA
 Commercial Version by MSC
« PC version is widely used in industries
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Recent Research Topics

Non-Linear Problems
— Crash, Contact, Non-Linear Material
— Discontinuous Approach
« X-FEM
Parallel Computing
— also in commercial codes

Adaptive Mesh Refinement (AMR)

— Shock Wave, Separation

— Stress Concentration

— Dynamic Load Balancing (DLB) at Parallel Computing
Mesh Generation

— Large-Scale Parallel Mesh Generation



 Numerical Method for PDE (Method of Weighted
Residual)

e Gauss-Green’s Theorem

 Numerical Method for PDE (Variational Method)
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Approximation Method for PDE
Partial Differential Equations: {5 A 2=

« Consider solving the following differential
equation (boundary value problem), domain V,
boundary S:

L(u) = f

U (solution of the equation) can be approximated
by function u,, (linear combination)

M
u, = Z ay Y. Trial/Test Function (54TRI%4) (known
- function of position, defined in domain and
B at boundary. “Basis” in linear algebra.

d,  Coefficients (unknown)
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Method of Weighted Residual
MWR: EH T S EREIE
* u,, is exact solution of u if R (residual : 5%2)= 0:
R=L(u, )~ f
* In MWR, consider the condition where the following

integration of R multiplied by w (weight/weighting
function : E#AEH%%) over entire domain is 0

jWR(uM)dV:O

« MWR provides “smoothed” approximate solution,
which satisfies R=0 in the domain V



FEM-intro 13

Method of Weighted Residual
MWR: EHAfTSREE

* u,, is exact solution of u if R (residual : 5%2)= 0:
A

R

R=L(u,)-f
M /—\\/A\_/’

* In MWR, consider the condition where the following
integration of R multiplied by w (weight/weighting
function : E#AEH%%) over entire domain is 0

jWR(uM)dV:O

« MWR provides “smoothed” approximate solution,
which satisfies R=0 in the domain V
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Variational I\/Iethod (Ritz) (1/2)

 Itis widely known that exact solution u provides
extreme values (max/min) of “functional : JLEI%L” 1(u)

— Euler equation: differential equation satisfied by u, if
functional has extreme values (#B{E&)

— Euler equation is satisfied, if u provides extreme values of
1(u).

— provide extreme values : {28 =& % (or stationarize)
 For example, functional, which corresponds to

governing equations of linear elasticity (principle of

virtual work, equilibrium equations), is “principle of

minimum potential energy (principle of minimum strain

energy) (IRIILF—&g&/ND, EAIRILFTF—F/D) .

I\|
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Variational Method (Ritz) (2/2)
o Substitute the following approx. solution into I(u),

and calculate coefficients a under the condition

where I,,=I(u,,) provides extreme values, then u,,
IS obtained:

M
Uy = ZaiLPi
=)

« Variational method is theoretical method, and
can be only applied to differential equations,
which has equivalent variational problem.

— In this class, we mainly use MWR
— Brief overview of Ritz method will given later today.

15
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Finite Element Method (FEM)
BRZRE

Entire region is discretized into fine
elements (£3) , and the following
approximation is applied to each
element:

:ZaiLIJi
=)

MWR or Variational Method is applied to each
element

Each element matrix is accumulated to global
matrix, and solution of obtained linear equations
provides approx. solution of PDE.

Details of FEM will be provided after next class

%ﬁ.’?’

. jﬁ%@gﬁh

16
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Example of MWR (1/3)

 Thermal Equation

2 2
/ 6T2+6T2 +Q=0 InV
ox~ oy

A:Conductivity, Q:Heat Gen./Volume

T =0 at boundary S

* Approximate Solution
T=) aW,
j=1
 Residual
I R R
R(a,x,y) = AZa[ + 2’]+Q

oy

17
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Example of MWR (2/3)

« Multiply weighting function w;, and apply integration
over V.

jvvi RdV =0

 If a set of weighting function w; Is a set of n
different functions, the above integration provides
a set of n linear equations:

o # trial/test functions = # weighting functions

ijan)w dv = ijdv (i=1..n)
x> oy’

1—1



FEM-intro

Example of MWR (3/3)

o Matrix form of the equations is described

as follows:
B} ={Q}
B.:ij azwj+azwj dv Q.:—ijdv
Py L axe ay? T

Actual approach is slightly different from this
(more detailed discussions after next week)

19
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Various types of MWR’s

« Various types of weighting functions

e Collocation Method
e Least Square Method
e Galerkin Method

Bk
YNSE3
£5—F ik

20
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Collocation Method

e Weighting function: Dirac’s Delta Function o

5(2) —oo |f 7z=0

O
5(2)=0 if z#0, [ 5(z)dz=1 L
W = 5(X =X ) X : location O

* |n collocation method, R (residual) is setto O at n
collocation points by feature of Dirac’s Delta Fn. o:

= oo at X =X,

=0atXx # X,

|RA(x-x)av =R],, 5§X—xi
v | O(X—X,

* If nincreases, R approaches to O over entire
domain.
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Least Square Method

* Weighting function:
oR
W =——
0a
* Minimize the following integration according to a
(unknowns):

I(a) = j [R@a, )] dv

—[l @)= ZI{R(a X)

'

I{R(a X) aR(Z X)} dv =0

OR(3,,X)
0a

}dV:O

22
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Galerkin Method

 Weighting Function = Test/Trial Function:

w =Y
« Galerkin, Boris Grigorievich

— 1871-1945

— Engineer and Mathematician of Russia

— He got a hint for Galerkin Method while
he was imprisoned because of anti-
czarism (1906-1907).

23
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Example (1/2)

e Governing Equation

2

-9;+u+x:0 (0= x<)
dx

 Boundary Conditions: Dirichlet
u=0@x=0
u=0@x=1

 Exact Solution
u:sinx_

sinl

24
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25

. SN X
Exact Solution u=— X
sinl

0.08

0.06 F
> 004

0.02 f
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Example (2/2)

« Assume the following approx. solution:

u=x1-x)(a +a,x)=x(1-x)a, +x’(1-x)a, =a,¥, +a,¥,
W =x1-x), WY,=x’(1-X)

Test/trial function satisfies u=0@x=0,1

e Residual is as follows:

R(a,,a,,X) = X+ (-2+x—x)a, +(2-6x+x° —x%)a,

o Let's apply various types of MWR to this equation

— We have two unknowns (a,, a,), therefore we need two
iIndependent weighting functions.

26
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Collocation Method
e Nn=2, x=1/4, x=1/2 for collocation points:

1 1
R(al’aZ’Z) =0, R(al’aZ’E) =0

R(a,,a,,X) = X+ (-2+x—Xx)a, +(2-6x+Xx* - x")a,

e Solution:
29/16 -35/64](a,| [1/4 6
{7/4 718 Haz}_{l/Z} ) TR
=227 451 a0

217

27



FEM-intro

Least Square Method

« Weighting functions, Residual:

leﬁ:—2+x—x2, w2:£:2—6x+x2—x3
ot 0a,
R(a,,a,,X) = X+ (-2+x—Xx%)a, +(2-6x+x* - x")a,

e Solution:
fR( x)a—Rdx—fR( X) (=24 X~ x2) dx=0
(@, 2 %) 5 = | R(a, 2, =

fR( x)a—Rdx—fR( X) (2= 6x+x2 —x%) dx = 0
REC T oa, = do A, 8, =
202 10110(a,] [55 _ 46161 _ _ 41713
{707 1572}{%}_{399} ) %" 246137 7 246137

u=X2"%) 46161 41713)
246137
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Galerkin Method

« Weighting functions, Residual:
w, =W =x(1-x), w,=W, =x’(1-X)

R(a,,a,,X) = X+ (-2+Xx—-x%)a, +(2-6x+Xx* - x%)a,
e Results:

"R(a,.a,, ) ¥, dx= [ R@,a,, %) (x-x?) dx=0
JO JO

.1R(a1,a2,x) W, dx= .1R(ai,a2,x) (x*=x°)dx=0
J0 J0

3/10 3/20 |(a] [1/12 P o - 71
{3/20 13/105}{%}_{1/20} %~ 369

u="47% 714 635
369

v
41

29
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30

Results

] Collocation | Collocation Least- .

0.25 0.04401 0.04493 0.04462 0.04311 0.04408
0.50 0.06975 0.07143 0.07031 0.06807 0.06944
0.75 0.06006 0.06221 0.06084 0.05900 0.06009

Galerkin Method provides the most accurate solution

— If functional exists, solutions of variational method and
Galerkin method agree.

A kind of analytical solution (later of this material)
Many commercial FEM codes use Galerkin method.

In this class, Galerkin method Is used.

Least-square may provide robust solution in Navier-
Stokes solvers for high Re.
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Homework (1/2)

* Apply the following two method is the next page to
the same equations:
— Method of Moment
— Sub-Domain Method
— Results at x=0.25, 0.50, 0.75

 Compare the results of “collocation method” on
“non-collocaion points” with exact solution
— Explain the behavior
— Try different collocation points

31
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Homework (2/2)
e Method of Moment (E—X* > k%)

w=x" (i=1)

— Weighting functions ?

e Sub-Domain Method (&% $E1E;:%)
— Domain Vs divided into sub-domains V,
(i=1-n), and weighting functions w; are
given as follows:
{1 for points inV

W1 1

- --

W =
' |0 for points out oV,

— Two unknowns, two sub
domains

— Two sub-domains do not share
any overlaps




 Numerical Method for PDE (Method of Weighted
Residual)

e Gauss-Green’s Theorem

 Numerical Method for PDE (Variational Method)
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Gauss’s Theorem

ou oV JW
j( LV,

o oy o ) dv = i (Un, +Vn, +Wn,)dS

V

3D (x,y,2

DomainV surrounded by smooth close
surfaceS

3 continuous functions defined Yh:

- U(x,y,2) V(xy,z) W(xy,z)

Outward normal vectan on surfaces

- n,, n, n;direction cosine

e
£

V

-

\QS

\ 4

34
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Green’s Theorem (1/2)

e Assume the following functions:

U= Aa—B, V = Aa—B, W = Aa—B
0X oy 0z
e Thus:

ouU oV oW _(0°B 0°B 0°B) (0AdB 0AOB 0AOB
+ 0+ = + + + + +
ox 0y 0z ox> ody> 0z X Ox 9y oy 0z 0z

 Apply Gauss’s theorem:
,[ 0° B 6 B 6 B dV+_[ 6A6B+6A6B+0A6B qv
OX 0X 0y 0y 0z 0z

jUn +Vny+WnZ dS= IA{ n + aB n, + aB ]dS
S

az
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Green’s Theorem (2/2)

e (cont.)
J‘ n B_an dS:j aBax+aBay+aBaz 4s
0z .\ 0xon dyon 0zodn
0B _ L
=| A— dS % Gradient of B to the direction of normal vector
. Finally:

36

jA{a B 0° : L0 B)dv IA dS_J‘(OAaB_I_OAaB_I_BAaBjdV

2\ 0x 0Xx 0y dy 0z 0z

e Appears often after next class
— From 24 order differentiation tostorder differentiation.
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In Vector Form

e Gauss’'s Theorem

jmwvdv:ijnds
V S

e Green’s Theorem

IvAu dv = j(vDu)Tn dS—j(DTv)(Du) dv

Vv

37



 Numerical Method for PDE (Method of Weighted
Residual)

e Gauss-Green’s Theorem

 Numerical Method for PDE (Variational Method)
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Variational I\/Iethod (Ritz) (1/2)

 Itis widely known that exact solution u provides
extreme values (max/min) of “functional : JLEI%L” 1(u)

— Euler equation: differential equation satisfied by u, if
functional has extreme values (#B{E&)

— Euler equation is satisfied, if u provides extreme values of
1(u).

— provide extreme values : {28 =& % (or stationarize)
 For example, functional, which corresponds to

governing equations of linear elasticity (principle of

virtual work, equilibrium equations), is “principle of

minimum potential energy (principle of minimum strain

energy) (ZRILF—&/ND, BEAIRILE—&F/N) 7.
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Variational Method (Ritz) (2/2)
o Substitute the following approx. solution into I(u),

and calculate coefficients a under the condition

where I,,=I(u,,) provides extreme values, then u,,
IS obtained:

M
Uy = ZaiLPi
=)

« Variational method is theoretical method, and
can be only applied to differential equations,
which has equivalent variational problem.

— In this class, we mainly use MWR
— Brief overview of Ritz method will given later today.

40
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Application of Variational Method (1/5)

e Consider the following integration I(u) in 2D-domain
V, where u(x,y)is unknown function of x and y:

-

1[(ou? (ou) .
0)=[3 (a_ij +(a_;] _20u

.

dVv

'

Q: known value
u=0 at boundary S

e I(u) is “functional CGREE%) ” of function u
e U* IS a twice continuously differentiable function and
minimizes I(u). 77 1s an arbitrary function which

satisfies 7=0 at boundary S and a is a parameter.
Consider the following equation:

u(x, y)=u'(x,y)+a @(xy)

S
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Application of Variational Method (2/5)

« At this stage, the following condition is necessary

(WLEFEH)
()= 1 {u)

e Assume that functional I(u™+ an) is a function of a.
Functional | provides minimum value, if a=0.
Therefore, the following equation is obtained:

%l(uwaﬂ =0

e According to the definition of functional I(u),
following equation is obtained (next page)

I ou 0/7+0u a/7_Q,7 4V = 0
oX 0x oy oy

a=0

\Y,
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dVv

L —
Q)‘CD
< | C
N S

N
|
N
QO
C

2 * *
(@j _ou 0 (au} ou_olu +am)_ou", oy
ox 0a\o0x) OX 0X 0X 0X

aujzaﬂ a=0= 2 1(a_uf _ouap 0 |1fou)|_au ap
ox) ox da | 2\ ox ox ox oa |2\ dy dy oy

I[au 0n ., du a”—qudv:o
vl 0X 0x oy oy

43
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Application of Variational Method (3/5)

« Apply Green'’s theorem on 15t and 2" term of LHS,
and apply integration by parts, then following
equation is obtained: (A=n, B=u*) (next page) :

0°u’  0°u’ ou’
- + + dV+|n—dS=0
\-‘; ( ox*> oy’ Q}7 £/7 on

where ou _ou n +6Ln Gradient ofu* in the direction

on 0x = oy ’ of normal vector

e At boundary S n=0:

2, . 2, .*
- 5“2 +au2 +Qldv=0
0X oy

Vv

* (A) Is required, If the above is true for arbitrary n
0°u o°u

+
x> oy’

+Q=0 (A)
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Green’s Theorem
° (A:”, B:u*)

j ou 0n . ou on
oX Ox oy oy

- Q/])dv =0

o kA : .
,('7 0u2 +0u2 dV=j/70u 4S— J- 0/ ou +a/70u qv
v\ OX oy on oX 0Xx oy oy

J‘Laﬂ ou’ +6/7 au*jdvz_-‘.”(azu a u ]dV jl]ﬂds
Y,

ox 0x oy oay oL oxt oy’ L 0n
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Application of Variational Method (4/5)

 Equation (A) is called “Euler equation”

— Necessary condition (WESEH) of u*, which minimizes
functional 1(u), is that u* satisfies the Euler equation.

« Sufficient condition (+%5)
— Assume that u” is solution of the Euler equation and an=au

) 10)- o
—\J;(%quz* +‘2;“2* +Qjau* dV+j%{(a(ad){)j +(a(§;*)j }dv

a=0 A2=0
First Variation Second Variation
%_aﬁ:/\ %:a‘n/\

<
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Application of Variational Method (5/5)

It has been proved that u” (solution of Euler equation)
minimizes functional I(u).

o+ )> 1 ()

 Therefore, boundary value problem by Euler equation
(A) with B.C. (u=0@5S) Is equivalent to variational
problem.

— Solving equivalent variational problem provides solution of

Euler equation (Poisson’s equation/Heat Conduction
Equation in this case)

— Functional must exist !
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Approx. by Variational Method (1/4)

e Functional

1 2

I(u):j{l(@j —luz—xu}dx

o[ 2\dx) 2

e Boundary Condition
u=0@x=0

u=0@x=1

e Obtain u, which “stationalizes” functional I(u) under
this B.C.

— Corresponding Euler equation is as follows (same as
equation in p.21):
2

%+u+x:o (0< x<1) (B-1)
X
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Approx. by Variational Method (2/4)

« Assume the following test function with n-th order for
function u, which is twice continuously differentiable:

u, = x[{1-x)da, +a,x+ax? +--+ax"*) (B-2)

 If we increase the order of test function, u, Is closer
to exact solution u. Therefore, functional I(u) can be
approximated by I(u,):
— If I(u,)) stationarizes, I(u) also stationarizes.

* \We need to obtain set of unknown coefficients a,,
which satisfies the following stationary condition:

ol (u ) . _
. =0 (k=1~n) (B-3)
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Ritz Method

* Equation (B-3) is linear equations for a,-a..

 |f this solutions is applied to equation (B-2),
approximate solution, which satisfies Euler equation
(B-1), Is obtained.

— Approximate solution, but stationalizes I(u) strictly

* This type of method using a set of coefficients a;-a,, IS
called “Ritz Method”.
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Approx by Variational Method (3/4)
e Ritz Method, n=2

u, = x[L-x)la, +a,x) = x{il-x) & +x* [{L- x)a,

1

(T D(l_x_xz)(l_smz)dx}al
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Supplementation for (3/4) (1/3)

e Ritz Method n=2
u, = x[{L-x)a, +a,x) = x {1~ x) @& +x* [{1-x) &,

()= j{%[%j L xu}dx

2

:(1— 2x)a, + (2x—3x2)a2]2 —%[x - x) &, + x? [{L- x)@z]
< - X)a, + - X1,
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Supplementatlon for (3/4) (2/3)

(1-24)a, +(2x-3¢ ), - [l x)m, + ¢ - ), |
X2 [~ X) (3, + X (L~ aaz]

H{l 2x) )Z}dX}al
H{l 2x)(2x - 3x%) - x 3[Q1—X)2}dX}a2—jx2 f1- x)dx=0

0
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Supplementatlon for (3/4) (3/3)

(1-24)a, +(2x-3¢ ), - [l x)m, + ¢ - X,
X2 [~ X) (3, + X [fL- X aaz]

{(1— 2x)(2x-3x%) - x* ffiL- x)z}dx_ a,

1

1

" H{(Z -3¢ Xt~ X)Z}dx}az - [x*ffL-x)dx=0

0
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Approx. by Variational Method (4/4)

* Final linear equations are as follows:
3/10 3/20 1/12 ' _ 7
{3/20 13/105}{&12} {1/20} a7 369 41

u="27% 714 634
369

e This result Is identical with that of Galerkin Method
— NOT a coincidence !!

55
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Galerkin Method
* Weighting functions (which satisfy u=0@x=0,1),

Residual:
w, =W =x1-x), w,

=Y, =x°(1-X)

R(a,,a,,X) = X+ (-2+Xx—-x%)a, +(2-6x+Xx* - x%)a,

e Results:

"R(a,,a,, X)W, dx=
JO .

"R(a,a,, X)W, dx=
J0

X(1—X)
369

u-=

"R(a,,a,, X) (X=x2) dx=0
0

13/10 3/20 |[a| ([1/12
3/20 13/105||a,| |1/20

"R(a,.a,,X) 0C = %) dx=0
J0

(71+63X)
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Ritz Method & Galerkin Method (1/4)
U, = X[(1-x)((a, +a,x) = a,w, +a,w,

_tafduy 1, i!(%j _dy, 0 (dj ( dwy | %)d_wl
|(U)—£{2(dxj 5! —xu}dx da, | 2\ dx dx Oda, %0 %2 dx ) dx

A o~

ol (Uz) i e U o
=0 XU, | =X X Oy,
aa_i = 0a, _ 0a,
¢l dw Y dw d 1
J(;{(_V)\fj a-]_ + dv)\f' C\I/;/(Z a.2 dX - ?‘;Wl{(wlal + W2a2) + X}dX — O
al (UZ) — O —
03,

| Hde M o, +(sz jzaz}dx_ —H w,{(wa, +w,a,)+ x}dx} -0
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Ritz Method & Galerkin Method (2/4)

ol (u,) _ 0
0a
1 g 2 dw d 1 1
! {(d—v)\fj a + dv)\f O\II:/(ZaZ dx |- _([wl{(wla1+w2a2)+ xpdx [=0
dw ) _ dw dw
( xj dx dx dx
( j dw dw, | d>w,
dx dx MT0e

ar
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Ritz Method & Galerkin Method (3/4)

aI(UZ):O:> d—l;+u+X:O
0a, dx
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. I dx dx® . ’

Galerkin Method !!
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Ritz Method & Galerkin Method (4/4)

 This example is a very special case. But, generally
speaking, results of Galerkin method and Ritz
method agree, If functional exists.

« Although Ritz method provides approx. solution, that
satisfies Euler equation in strict sense. Therefore,
solution of Ritz method is closer to exact solution.

— This Is the main reason that Galerkin method Is accurate.
» Please just remember this.
e This relationship between Ritz and Galerkin is not
correct if functional does not exist.

— In these cases, Galerkin method is not necessarily the
best method from the viewpoint of accuracy and
robustness.




