Introduction to Parallel FEM In
Fortran
Parallel Data Structure

Kengo Nakajima
Information Technology Center
The University of Tokyo

Intro-pFEM

Parallel Computing

e Faster, Larger & More Complicated

o Scalabllity

— Solving N* scale problem using N* computational
resources during same computation time
» for large-scale problems: Weak Scaling
e e.g. CG solver: more iterations needed for larger problems

— Solving a problem using N* computational resources
during 1/N computation time
 for faster computation: Strong Scaling

Intro-pFEM

What is Parallel Computing ? (1/2)

e to solve larger problems faster

Homogeneous/Heterogeneous
Porous Media

Lawrence Livermore National Laboratory

very fine meshes are

A 4

Homogeneous Heterogeneous required for Simu_lations of
heterogeneous field.

Intro-pFEM

What is Parallel Computing ? (2/2)

 PC with 1GB memory : 1M meshes are the limit for FEM

— Southwest Japan with 1,000km x 1,000km x 100km in 1km mesh
-> 108 meshes

e Large Data -> Domain Decomposition -> Local Operation
* Inter-Domain Communication for Global Operation

partitioning
Data Data
Lar ge-ScaI € Communication
Data Local | Locd
Data Data L ocal Loca
Data Data

Intro-pFEM

What Is Communication ?

o Parallel Computing -> Local Operations

« Communications are required in Global Operations
for Consistency.

Intro pFEM

Operations In Parallel FEM
SPMD: Single -Program Multiple -Data

Large Scale Data -> partitioned into Distributed Local Data Sets.

FEM code can assembles coefficient matrix for each local data set :
this part could be completely local, same as serial operations

Global Operations & Communications happen only in Linear Solvers
dot products, matrix-vector multiply, preconditioning

~_ i
Local Data

— —

— i
Local Data

—— —

— 3
Local Data

S —— —

e i
Local Data

S — o

Intro-pFEM

Parallel FEM Procedures

 Design on “Local Data Structure” Is important
— for SPMD-type operations in the previous page

o Matrix Generation
* Preconditioned Iterative Solvers for Linear Equations

Intro pFEM

Bi-Linear Square Elements
Values are defined on each node

=

2

|G

O

=

(€8]

divide into two domains by
“node-based” manner, where
number of “nodes (vertices)” are
balanced.

Local information is not enough
for matrix assembling.

Information of overlapped
elements and connected nodes
are required for matrix

9 assembling on boundary nodes.

Intro pFEM

Local Data of Parallel FEM

e Node-based partitioning for preconditioned iterative solvers

e Local data includes information for :
Nodes originally assigned to the partition/PE

Elements which include the nodes : Element-based operations (Matrix
Assemble) are allowed for fluid/structure subsystems.

All nodes which form the elements but out of the partition

e Nodes are classified into the following 3 categories from the

viewpoint of the message passing
Internal nodes originally assigned nodes
External nodes in the overlapped elements but out of the partition
Boundary nodes external nodes of other partition

e Communication table between partitions

e NO global information required except partition-to-partition
connectivity

Node -based Partitioning
Internal nodes - elements - external nodes

PE#1 PE#0
21 22 23 24 25
O O O O o
17 18 19
160 O O Q O 20
12 13 14
K L O O O 15
7 8 9
6 @ ® O O O10
@ @ O O O
1 2 3 4 5
PE#3 PE#2

Intro pFEM

PE#1
4 5 6 12
O O O O
1 O O O O 11
2 3
@ @ O O
1 8 9 10
11 10 12
O O O
5 @ lbﬁ O 9
3@ o O 8
4
@ @ O
1 2 1
PE#3

O—0O—=06
4 5

O—O0—=O

1 2 3
PE#2

10

Node -based Partitioning
Internal nodes - elements - external nodes

®Partitioned nodes themselves (Internal Nodes) M

®Elements which include Internal Nodes REZSHEZR

®External Nodes included in the Elements 4} 5=

®Info of External Nodes are required for completely local
element—based operations on each processor.

Intro pFEM

15 6 7
O—O0—0
O—0—0—0
4 13 4 5
&——O—0—0
10 1 2 3
&—O0—0—0
8 9 11 12

In overlapped region among partitions.

PER

PERO

21
o

25

160

1Y

15

Q10

@

e

PEI3

H

® ()—()—() ®

5—9—03

30—0—0¢s

11

We do not need communication

during matrix assemble !

®Partitioned nodes themselves (Internal Nodes)
®Elements which include Internal Nodes

®External Nodes included in the Elements
In overlapped region among partitions.

®Info of External Nodes are required for completely local
element—based operations on each processor.

15 6 7 PENI PER0 5 s
. P ¢ x x alls e HH_&
2 3 14 Tis 4 5
o——o" 0" H o o o
O f*/ \/J \/) ° 7 8] 10 10 1 2 3
/84 /\/k /V\l /\ 5 " P . "o 12 ¢ \g, ?I; O
e e L T
./\,\/ VN o—o to—o—o T ;Is .
@, QO O 1 2 3 a 5 il
8 9 11 12 PER PER2 1 P_éﬂ 7 7 'Iilzz 3

Parallel Computing in FEM
SPMD: Single -Program Multiple -Data

FEM code

Local Data Linear Solvers

Local Data FEM code Linear Solvers

FEM code Linear Solvers

Intro-pFEM 13

Local Data

Local Data

Parallel Computing in FEM S
SPMD: Single -Program Multiple -Data cese

FEM code Linear Solvers

IB8I)S
———

ey . s

FEM code Linear Solvers

Linear Solvers

PE#3

Intro-pFEM 14

Parallel Computing in FEM
SPMD: Single -Program Multiple -Data

15 6 1

FEM code Linear Solvers

Local Data

FEM code

Linear Solvers

Local Data

FEM code Linear Solvers

Local Data

10— O— @8 Local Data

Intro-pFEM 1 2 7 15

Parallel Computing in FEM
SPMD: Single -Program Multiple -Data

FEM code

Linear Solvers

FEM code Linear Solvers

FEM code

Linear Solvers

16

Intro-pFEM

Parallel Computing in FEM
SPMD: Single -Program Multiple -Data

Local Data FEM code Linear Solvers

FEM code

Local Data Linear Solvers

FEM code Linear Solvers

MPI
17

Local Data

Local Data

Intro-pFEM

What is Communications ?

e to get information of “external nodes” from external
partitions (local data)

e “Communication tables” contain the information

Intro-pFEM

18

Intro-pFEM

1D FEM:

12 nodes/11 elem’s/3 domains

19

Intro-pFEM 20

1D FEM: 12 nodes/11 elem’s /3 domains
= %t £ 1751 : Tri-Diagonal Matrix

|I

1
1
2
2
3
3
4
4
5
5
6
6
»
7
8 8
8
0 9
9
10
10
11
11
12

Intro-pFEM 21

“Internal Nodes” should be balanced

1
1

2
5 #0O

3
3

4
4

5
5

6
6 #1

7
7

(5] 8
8
(9] 9

9

10
10
11

12

Intro-pFEM

Matrices are incomplete !

#0

#1

#2

Intro-pFEM

Connected Elements + External Nodes

1
2
2
4

(o] I~ (o)) lon |
© oo ~ ()] o1 ~

23

#0

#1

#2

Intro-pFEM

1D FEM: 12 nodes/11 elem’s/3 domains

1
2
2
4

[eoe] I~ (o)) lon |-~
© 0o ~ ()] o1 B

©O | 0| N O | 0o, | W IN|[PF

=
o

=
N

24

#0

#1

#2

Intro-pFEM

1D FEM: 12 nodes/11 elem’s/3 domains

25

Intro-pFEM 26

Local Numbering for SPMD

Numbering of internal nodes is 1-N (0-N-1), same operations
In serial program can be applied. How about numbering of
external nodes ?

v
600090
000000

Intro pFEM 27

PE: Processing Element S P M D :

Processor, Domain, Process Sing|e Program |\/|u|tip|e Data
mpirun —-np M <Program>

[| I

PE #0 PE #1 PE #2 PE #M-1

Program Program

Data #0 Data #1

Each process does same operation for different data

Large-scale data is decomposed, and each part is computed by each process
It is ideal that parallel program is not different from serial one except communication.

Program 00000 Program

Data #2 Data #M-1

Intro-pFEM

Local Numbering for SPMD

Numbering of external nodes: N+1, N+2 (N,N+1)

000090
006000906

000090

28

Intro-pFEM 29

1D FEM: 12 nodes/11 elem’s/3 domains

Integration on each element, element matrix -> global matrix
Operations can be done by info. of internal/external nodes
and elements which include these nodes

© 670-0-0-0
e

#1

4

Intro-pFEM

Finite Element Procedures

 [nitialization
— Control Data
— Node, Connectivity of Elements (N: Node#, NE: Elem#)
— Initialization of Arrays (Global/Element Matrices)
— Element-Global Matrix Mapping (Index, Item)

e Generation of Matrix

— Element-by-Element Operations (do icel= 1, NE)
e Element matrices
o Accumulation to global matrix

— Boundary Conditions

e Linear Solver
— Conjugate Gradient Method

30

Intro-pFEM 31

Preconditioned CG Solver

e Preconditioning

Compute r®= b-[A]x(®

SO 45 Ly 2y e | Diagonal Scaling/Point Jacobi
solve [M]zG D= p-1) _
Piy= T 0D e Parallel operations are
if i=1 i d i
pl= 70 required in
eéﬁ_ o o Dot Products
b= ZG1) 4 B, pt-D Mat-Vec. Multiplication
Sacki | SpMV: Sparse Mat-Vec. Mult.
q(1)= [A]p(l) ~ _
0y = Py /pHigt b 0 .. 0 0
xH= xE1D 4 g, pi
ritl= pGE-1 — q,q@ 0 b, 0 0
check convergence |z [M]:
end 0 0 D, O
0 0 .. 0 Dy

Intro-pFEM

Preconditioning, DAXPY

Local Operations by Only Internal Points: Parallel
Processing Is possible

1
1 2
I1C 2
1G— {z}= [Minv]{r} 3
3
doi=1, N 4
W(i,Z)=W(i,DD) * W(i,R) 4
enddo 1
5
1C 6 2
IC—— {x}= {x} + ALPHA*{p} DAXPY: double a{x} plus {y} 3
IC {r}= {r} - ALPHA*{q] 7
do i=1, N 8 4
PHI (i)= PHI (i) + ALPHA * W(i, P)
W(i, R)= W(i,R) — ALPHA * W(i, Q) 9 1
enddo
10 5
11 3
12 4

Intro-pFEM

Global Summation needed: Communicatio

1C
1C— ALPHA= RHO / {p} {a}
C1= 0.d0
do i=1, N
Cl= C1 + W(i,P)*W(i,Q)
enddo

ALPHA= RHO / Cf

Dot Products

B TW | DN

AW DN

O© 00| N O | 01| B WD |

=
o

=
N

W DN

33

MPI Programming

P#0

MPI| _REDUCE

P#2
P#3

 Reduces values on all processes to a single value

— Summation, Product, Max, Min etc.

e call MPI_REDUCE

AO

BO

Co

DO

Al

Bl

C1

D1

A2

B2

c2

D2

A3

B3

C3

D3

Reduce

P#0
P#1
P#2
P#3

34

op.A0-A3

op.B0O-B3

op.CO-C3

op.DO-D3

(sendbuf, recvbuf, count, datatype, op, root, comm, ierr)

— sendbuf choice T
- recvbuf choice o)

— count I I
— datatype T I

starting address of send buffer
starting address receive buffer
type is defined by "datatype”

number of elements in send/receive buffer
data type of elements of send/recive buffer

FORTRAN MPI_INTEGER, MPI_REAL, MPI_DOUBLE_PRECISION, MPI_CHARACTER etc.

C MPI_INT, MPI_FLOAT, MPI_DOUBLE, MPI_CHAR etc

- op 1 T

reduce operation
MPI_MAX, MPI_MIN, MPI_SUM, MPI_PROD, MPI_TLAND, MPI_BAND etc

Users can define operations by MPI_OP_CREATE

- root I I rank of root process
— comm I I communicator
- ierr I O completion code

MPI Programming 35

P#0 | AO|BO|CO|DO P#0 | AO|BO|CO|DO

MPI_BCAST ST — e
—_— P#2 P#2 | A0 |BO|CO|DO

P#3 P#3 | AO|BO|CO|DO

 Broadcasts a message from the process with rank "root" to all other
processes of the communicator

e call MPI_BCAST (buffer, count, datatype, root,comm, ierr)
— buffer choice I/0 starting address of buffer
type is defined by “datatype”

- count I I number of elements in send/recv buffer

- datatype I I data type of elements of send/recv buffer
FORTRAN MPI_INTEGER, MPI_REAL, MPI_DOUBLE_PRECISION, MPI_CHARACTER etc.
C MPI_INT, MPI_FLOAT, MPI_DOUBLE, MPI_CHAR etc.

- root I I rank of root process

- comm I I communicator

- ierr I 0 completion code

MPI Programming 36

P#0 | AO|BO|CO|DO P#0 | op.A0-A3 | 0p.B0-B3 |0op.C0O-C3|op.DO-D3
All reduce
P#1 |A1|B1|C1|D1 P#1 | op.A0-A3|0p.B0-B3|0p.CO-C3|0p.D0O-D3
—_— P#2 | A2|B2|C2|D2 P#2 | op.A0-A3 | 0p.B0-B3 |0p.C0O-C3|0p.DO-D3
P#3 |A3|B3|C3|D3 P#3 | op.A0-A3|0p.B0-B3|0p.CO-C3|0p.D0O-D3

« MPI_Reduce + MPI_Bcast

 Summation (of dot products) and MAX/MIN values are likely to utilized In
each process

e call MPI_ALLREDUCE

(sendbuf, recvbuf, count, datatype, op, comm, ierr)
— sendbuf choice I starting address of send buffer
— recvbuf choice O starting address receive buffer
type is defined by "datatype”

- count I I number of elements in send/recv buffer
- datatype I I data type of elements in send/recv buffer
- op I I reduce operation

- comm T I commuinicator

- ierr I o) completion code

MPI Programming 37

“op” of MPI_Reduce/Allreduce

call MPI_REDUCE
(sendbuf, recvbuf, count, datatype, op, root, comm, ierr)

e MPI_MAX, MPI_MIN Max, Min
e MPI_SUM, MPI_PROD Summation, Product
e MPI_LAND Logical AND

Intro-pFEM 38

Preconditioned CG Solver

e Preconditioning

Compute r®= b-[A]x(®

SO 45 Ly 2y e | Diagonal Scaling/Point Jacobi
solve [M]zG D= p-1) _
Piy= T 0D e Parallel operations are
if i=1 i d i
pl= 70 required in
eéﬁ_ o o Dot Products
b= ZG1) 4 B, pt-D Mat-Vec. Multiplication
Sacki | SpMV: Sparse Mat-Vec. Mult.
q(1)= [A]p(l) ~ _
0y = Py /pHigt b 0 .. 0 0
xH= xE1D 4 g, pi
ritl= pGE-1 — q,q@ 0 b, 0 0
check convergence |z [M]:
end 0 0 D, O
0 0 .. 0 Dy

Intro-pFEM

Matrix-Vector Products
Values at External Points: P-to-P Communication

IC
1C— {a}= [A] {p}

do i=1, N
W(i,Q = DIAGCi)*W(i,P)
do j= INDEX(i-1)+1, INDEXC(i)
W(i,Q) = W@,Q) + AMAT(j)*W(ITEM(j), P)
enddo
enddo

0000000

39

Intro-pFEM

Mat-Vec Products: Local Op. Possible

1 1
2 2
3 3
4 4
5 5
6 B 6
7 - 7
8 8
9 9
10 10
11 11
12 12

Intro-pFEM

Mat-Vec Products: Local Op. Possible

AW DN |

I N| O | O

10

11

12

AT | DN

| N | O | O

10

11

12

41

Intro-pFEM

Mat-Vec Products: Local Op. Possible

AW DN |

I N| O | O

10

11

12

AT | DN

| N | O | O

10

11

12

42

Mat-Vec Products: Local Op. #0

e,

1

2
3
4

a |l b~ 1 W |IDN|F

Mat-Vec Products: Local Op. #1

1 1
2 B 2
3 - 3
4 4
1 1
2 B 2
3 - 3
4 4
5
6 60060606600

Mat-Vec Products: Local Op. #2

1 1
2 2
3 3
4 4

'

W IN |

a | b~ W IiN |-

Intro pFEM

1D FEM: 12 nodes/11 elem’s/3 domains

46

Intro pFEM

1D FEM: 12 nodes/11 elem’s/3 domains

Local ID: Starting from 1 for node and elem at each domain

47

1D FEM: 12 nodes/11 elem’s/3 domains

Internal/External Nodes

©
|
o

#1

w0 @070-0
-

—9—9—?
o

#2

—0
|
@

4

;Ezagn

MPI Programming

What Is Peer -to-Peer Communication ?

e Collective Communication
— MPI_Reduce, MPI_Scatter/Gather etc.
— Communications with all processes in the communicator

— Application Area
 BEM, Spectral Method, MD: global interactions are considered
e Dot products, MAX/MIN: Global Summation & Comparison

e Peer-toPeer/Point-to-Point

49

— MPI_Send, MP|_Receive S | i T
— Communication with limited = 0500000
processes) i _L
 Neighbors S

— Application Area
« FEM, FDM: Localized Method

Intro pFEM

50

Node-based Partitioning
Internal nodes - elements - external nodes

PE#1 PE#0
21 22 23 24 25
O O O O o
17 18 19
160 O O Q O 20
12 13 14
K L O O O 15
7 8 9
6 @ ® O O O10
@ @ O O O
1 2 3 4 5
PE#3 PE#2

PE#1
4 5 6 12 15 6 1
O O O O O O O
PE#0
1 O O O O11 O O O O
2 3 14 13 4 4]
@ @ O O @ O O O
7 8 9 10 10 1 2 3
11 10 12
O O O
5 @ .6 O 9
3@ o O 8
4
@ @ O
1 2 1

Intro pFEM 51

Description of Distributed Local Data

1.0 9 n /1)2 |nternal/External Points
T T — Numbering: Starting from internal pts,
I then external pts after that
8 @) O O6 _
4 |9 * Neighbors
—O—0O——=O0 — Shares overlapped meshes
12 3 — Number and ID of neighbors

e External Points

— From where, how many, and which
external points are received/imported ?

e Boundary Points

— To where, how many and which
boundary points are sent/exported ?

Intro pFEM

Boundary Nodes (15 s) : SEND

PE#2 : send information on “boundary nodes”

15 6 7
Oo—O0——=0
PE#0
O—O—0—"™20
14 13 4 5
)) f)
\—y p\—y S
10 J1 2 |3
11 10 12
O—0O—-0

Fundamental MPI

SEND: sending from boundary nodes
Send continuous data to send buffer of neighbors

e MPI_Isend

(sendbuf, count, datatype, dest, tag, comm, request)
- sendbuf choice starting address of sending buffer

- count I number of elements sent to each process
data type of elements of sending buffer
rank of destination

— datatype T
— dest I

I
I
I
I

oO—0O0—=0 9 11
10 9 11 12
5 .—.6—() 9 T T
36— ©® O s 8 6
4 I4 :[5
—0 O O O
1) 7 7 1 2 3
PE#1 PE#2

53

MPI Programming

MPI_ISEND

 Begins a non-blocking send

— Send the contents of sending buffer (starting from sendbuf, number of messages: count)
to dest with tag .

— Contents of sending buffer cannot be modified before calling corresponding MPI_Waitall.

e call MPI_ISEND
(sendbuf, count, datatype, dest, tag, comm, request, ierr)
— sendbuf choice I starting address of sending buffer

- count I I number of elements sent to each process
- datatype I I data type of elements of sending buffer

— dest T I rank of destination

- tag I I message tag

This integer can be used by the application to distinguish
messages. Communication occurs if tag’ s of
MPI_Isend and MPI_Irecv are matched.

Usually tag is set to be “0” (in this class),
— comm T T communicator
- request I communication request array used in MPI_Waitall
— ierr I o) completion code

O

R4

Intro pFEM

External Nodes (4}5) : RECEIVE

PE#2 : receive Information for “external nodes”

55

Fundamental MPI

RECV: recelving to external nodes
Recv. continuous data to recv. buffer from neighbor S

e MPI Irecv
(recvbuf, count, datatype, dest, tag, comm, request)

- recvbuf choice I starting address of receiving buffer

- count I I number of elements in receiving buffer
—~ datatype I I data type of elements of receiving buffer
- source I I rank of source

56

MPI Programming

MPI|_IRECV

* Begins a non-blocking receive

— Receiving the contents of receiving buffer (starting from recvbuf, number of messages:
count) from source with tag .

— Contents of receiving buffer cannot be used before calling corresponding MPI_Waitall.

e call MPI_IRECV
(recvbuf, count, datatype, dest, tag, comm, request, ierr)

— recvbuf choice T starting address of receiving buffer

— count I I number of elements in receiving buffer

- datatype I I data type of elements of receiving buffer

— source I I rank of source

- tag I I message tag
This integer can be used by the application to distinguish
messages. Communication occurs if tag’ s of
MPI_Isend and MPI_Irecv are matched.
Usually tag is set to be “0” (in this class),

— comm I I communicator

- request I 0 communication request used in MPI_Waitall

- ierr I 0 completion code

R7

MPI Programming

MPI WAITALL

e MPI_Waitall blocks until all comm’s, associated with request in the array,
complete. It is used for synchronizing MPI_Isend and MPI_Irecv in this class.

o At sending phase, contents of sending buffer cannot be modified before calling
corresponding MPI_Waitall. At receiving phase, contents of receiving buffer
cannot be used before calling corresponding MPI_Waitall.

e MPI_IsendandMPI_Irecv can be synchronized simultaneously with a single
MPI_Waitall if it IS consitent.

— Same request should be used in MPI_Isend and MPI_Irecv.
o Its operation is similar to that of MPI_Barrier but, MPI_Waitall can not be

replaced by MPI_Barrier.

— Possible troubles using MPI_Barrier instead of MPI_Waitall: Contents of request and
status are not updated properly, very slow operations etc.

e call MPI_WAITALL (count, request, status, ierr)

- count I I number of processes to be synchronized
- request I I/0 comm. request used in MPI_Waitall (array size: count)
- status I o) array of status objects

MPI_STATUS_SIZE: defined in ‘mpif.h’, ‘mpi.h’

- ierr I o) completion code

RR

S2-r 59

| Distributed Local Data Structure for
Parallel Computation

 Distributed local data structure for domain-to-doain
communications has been introduced, which is appropriate

for such applications with sparse coefficient matrices (e.g.

FDM, FEM, FVM etc.).

— SPMD
— Local Numbering: Internal pts to External pts

— Generalized communication table

e Everything Is easy, If proper data structure Is defined:
— Values at boundary pts are copied into sending buffers

— Send/Recv
— Values at external pts are updated through receiving buffers

