
Communication -Computation
Overlapping with Dynamic Loop
Scheduling for Preconditioned Parallel
Iterative Solvers on Multicore/Manycore
Clusters

Kengo Nakajima, Toshihiro Hanawa
Information Technology Center, The University of To kyo

10th International Workshop on Parallel Programming Models &
Systems Software for High-End Computing (P2S2 2017)
in conjunction with the 46th International Conferenc e on Parallel
Processing (ICPP 2017)
August 14, 2017, Bristol, UK

2

Acknowledgements
• JST-CREST, Japan

– ppOpen-HPC Project

• DFG-SPPEXA, Germany
– ESSEX-II Project

• JCAHPC (Joint Center
for Advanced High
Performance Computing)
– CCS, University of

Tsukuba

– ITC, The University of
Tokyo

• Prof. Scott Baden (LBNL)
• Dr. Jack Deslippe (LBNL)

Supercomputers in ITC/U.Tokyo
2 big systems, 6 yr. cycle

3

FY

08 09 10 11 12 13 14 15 16 17 18 19 20 21 22

Hitachi SR11K/J2
IBM Power-5+

18.8TFLOPS, 16.4TB

KPeta

Yayoi: Hitachi SR16000/M1
IBM Power-7

54.9 TFLOPS, 11.2 TB

Reedbush, SGI
Broadwell + Pascal

1.80-1.93 PFLOPS

Integrated Supercomputer System for
Data Analyses & Scientific Simulations

Hitachi HA8000 (T2K)

AMD Opteron
140TFLOPS, 31.3TB

Oakforest-PACS
Fujitsu, Intel KNL
25PFLOPS, 919.3TB

BDEC System
50+ PFLOPS (?)

Post-K ?K computer

Oakleaf-FX: Fujitsu PRIMEHPC
FX10, SPARC64 IXfx
1.13 PFLOPS, 150 TB

Oakbridge-FX
136.2 TFLOPS, 18.4 TB

JCAHPC:
Tsukuba, Tokyo

Big Data &
Extreme Computing

GPU Cluster
1.40+ PFLOPS

Oakforest-PACS (OFP)

• Full Operation started on December 1, 2016
• 8,208 Intel Xeon/Phi (KNL), 25 PF Peak Performance

– Fujitsu

• TOP 500 #7 (#1 in Japan), HPCG #5 (#2) (June 2017)
• JCAHPC: Joint Center for Advanced High

Performance Computing)
– University of Tsukuba
– University of Tokyo

• New system will installed in Kashiwa-no-Ha (Leaf of Oak)
Campus/U.Tokyo, which is between Tokyo and Tsukuba

– http://jcahpc.jp

4

Features of Oakforest-PACS
• Computing Node

– 68 cores/node, 3 TFLOPS x 8,208= 25 PFLOPS
– 2 Types of Memory

• MCDRAM: High-Speed, Large-Latency, 16GB
• DDR4: Medium-Speed, 96GB

– Variety of Selections for Memory-Mode/Cluster-Mode

• Node-to-Node Communication
– Fat-Tree Network with Full Bi-Section Bandwidth
– Intel’s Omni-Path Architecture

• High Efficiency for Applications with Full Nodes of the System
• Flexible and Efficient Operations for Multiple Jobs

5

6

• Introduction
• Dynamic Loop Scheduling
• Hardware Environment

• Preliminary Results by Parallel FEM (GeoFEM/Cube)
• Strong Scaling
• SAI Preconditioning

• Summary

7

Overview of the Present Work
• Communication-Computation Overlapping (CC-

Overlapping) in Sparse Matrix-Vector Multiplication
(SpMV)

• Dynamic Loop Scheduling of OpenMP
• Performance Evaluation by Parallel FEM Application

(GeoFEM/Cube) on multicore/manycore clusters.
• Performance Improvement by 40%-50% for

Preconditioned CG Solvers in Strong Scaling up to
16,384 cores of Fujitsu PRIMEHPC FX10 (FX10) and
KNL Cluster (Oakforest-PACS, OFP).

• 15%-20% improvement for GeoFEM/Cube with SAI-
BiCGSTAB using 12,288 cores of Fujitsu FX10 and
OFP.

8

Communication/Synchronization
Avoiding/Reducing/Hiding

for Parallel Preconditioned Krylov Iterative Methods
• Dot Products

– Pipelined Methods [Ghysels et al.
2014]

– Gropp’s Algorithm
– Utilization of asynchronous

collective communications (e.g.
MPI_Iallreduce) supported in MPI-
3 for hiding such overhead.

• SpMV
– Overlapping of Comp. & Comm.

(CC-Overlapping)
– + Dynamic Loop Scheduling
– Matrix Powers Kernels [Hoemmen

et al. 2010]

Compute r(0)= b-[A]x(0)

for i= 1, 2, …
solve [M]z(i-1)= r(i-1)

ρi-1= r(i-1) z(i-1)
if i=1
p(1)= z(0)

else
βi-1= ρi-1/ρi-2
p(i)= z(i-1) + βi-1 p(i-1)

endif
q(i)= [A]p(i)

αi = ρi-1/p(i)q(i)
x(i)= x(i-1) + αip(i)

r(i)= r(i-1) - αiq(i)

check convergence |r|
end

9

• Introduction
• Dynamic Loop Scheduling
• Hardware Environment

• Preliminary Results by Parallel FEM (GeoFEM/Cube)
• Strong Scaling
• SAI Preconditioning

• Summary

Comm.-Comp. Overlapping
(CC-Overlapping): Static

10

call MPI_Isend
call MPI_Irecv

do i= 1, Ninn
(calculations)

enddo
call MPI_Waitall

do i= Ninn+1, Nall
(calculationas)

enddoGood for Stencil
Not so Effective SpMV

Pure Internal Meshes

External (HALO) Meshes

Internal Meshes on
Boundary’s
(Boundary Meshes)

Dynamic Loop Scheduling (1/2)

• CC-Overlapping in HALO Exchange
– HALO exchange including sending buffer copy is done by the master

thread

– Dynamic loop scheduling is applied to the computations for pure internal
nodes/meshes

– The computations for pure internal nodes/meshes starts without master
thread, while the master thread is doing communications.

– The master thread can join the computations for pure internal
nodes/meshes after completion of the communication.

• There are four different loop scheduling types (kinds) (static,
dynamic, guided, auto), and the optional parameter (chunk)
must be a positive integer:

11

C: #pragma omp parallel for schedule (kind [, chunk])
Fortran: !$omp parallel do schedule (kind [,chunk])

Dynamic Loop Scheduling (2/2)
• The kind “static” is the default, and loops are divided into equal-

sized chunks (or as equal as possible)
– By default, chunk size is loop-count/number-of-threads.

• If the kind “dynamic” is applied, the internal work queue is used
for giving a chunk-sized block of loop iterations to each thread.
– When operations of a thread have finished, that retrieves the next block

of loop iterations from the top of the work queue.
– The chunk size is equal to 1 by default.
– Extra overhead for scheduling is involved for this type of scheduling.

• (Next Page) Pseudo Code with Dynamic Loop Scheduling
– Global communications are done by the master thread between “!$omp

master” and “!$omp end master”.
– The loop for computations of pure inner nodes/meshes with dynamic

scheduling starts without the master thread, and that join the loop
operations after the completion of communications.

– Smaller value of chunk size may prevent load imbalance among threads,
but extra operations related to the internal work occur more frequently for
smaller chunk size, which may lead to very significant overhead.

12

Comm.-Comp. Overlapping
+ Dynamic Loop Scheduling: Dynamic

CC-Overlapping 13

call MPI_Isend
call MPI_Irecv
call MPI_Waitall

do i= 1, Ninn
(calculations)

enddo

do i= Ninn+1, Nall
(calculationas)

enddo

Master

Dynamic

Static

Pure Internal Meshes

External (HALO) Meshes

Internal Meshes on
Boundary’s
(Boundary Meshes)

14

Dynamic Loop Scheduling
• “dynamic”

• “!$omp master～!$omp end master”
!$omp parallel private (neib,j,k,i,X1,X2,X3,WVAL1,WVAL2,WVAL3)
!$omp& private (istart,inum,ii,ierr)

!$omp master Communication is done by the master thread (#0)
!C
!C– Send & Recv.
(…)

call MPI_WAITALL (2*NEIBPETOT, req1, sta1, ierr)
!$omp end master

!C The master thread can join computing of internal
!C-- Pure Internal Nodes nodes after the completion of communication

!$omp do schedule (dynamic,200) Chunk Size= 200
do j= 1, Ninn
(…)

enddo
!C
!C-- Boundary Nodes Computing for boundary nodes are by all threads

!$omp do default: !$omp do schedule (static)
do j= Ninn+1, N
(…)

enddo

!$omp end parallel

Ina, T., Asahi, Y., Idomura, Y., Development of optimization of
stencil calculation on Tera-flops many-core architecture, IPSJ SIG
Technical Reports 2015-HPC-152-10, 2015 (in Japanese)

15

• Introduction
• Dynamic Loop Scheduling
• Hardware Environment

• Preliminary Results by Parallel FEM (GeoFEM/Cube)
• Strong Scaling
• SAI Preconditioning

• Summary

3 of 5 used for the present work

• Yayoi (Hitachi SR16000, IBM Power7)
– 54.9 TF, Nov. 2011 – Oct. 2017

• Oakleaf-FX (Fujitsu PRIMEHPC FX10)
– 1.135 PF, Commercial Version of K, Apr.2012 – Mar.2018

• Oakbridge-FX (Fujitsu PRIMEHPC FX10)
– 136.2 TF, for long-time use (up to 168 hr), Apr.2014 – Mar.2018

• Reedbush (SGI, Intel BDW + NVIDIA P100 (Pascal))
– Integrated Supercomputer System for Data Analyses & Scientific

Simulations

– 1.93 PF, Jul.2016-Jun.2020

– Our first GPU System (Mar.2017), DDN IME (Burst Buffer)

• Oakforest-PACS (OFP) (Fujitsu, Intel Xeon Phi (KNL))
– JCAHPC (U.Tsukuba & U.Tokyo)

– 25 PF, #6 in 48th TOP 500 (Nov.2016) (#1 in Japan)

– Omni-Path Architecture, DDN IME (Burst Buffer)

16

17

Code Name KNL BDW FX10

Architecture

Intel Xeon Phi
7250

(Knights
Landing)

Intel Xeon E5-
2695 v4

(Broadwell-
EP)

SPARC IX fx

Frequency
(GHz) 1.40 2.10 1.848

Core # (Max
Thread #) 68 (272) 18 (18) 16 (16)

Peak
Performance
(GFLOPS)

3,046.4 604.8 236.5

Memory (GB) MCDRAM: 16
DDR4: 96 128 32

Memory
Bandwidth(GB/
sec., Stream
Triad)

MCDRAM:
490

DDR4: 80.1
65.5 64.7

Out-of-Order Y Y N

System Oakforest-
PACS Reedbush-U Oakleaf-FX

18

Code Name KNL BDW FX10

Architecture

Intel Xeon Phi
7250

(Knights
Landing)

Intel Xeon E5-
2695 v4

(Broadwell-EP)
SPARC IX fx

Frequency (GHz) 1.40 2.10 1.848

Core # (Max
Thread #) 68 (272) 18 (18) 16 (16)

Peak
Performance
(GFLOPS)/core

44.8 33.6 14.8

Memory
Bandwidth(GB/
sec., Stream
Triad)/core

MCDRAM:
7.21

DDR4: 1.24
3.64 4.04

Out-of-Order Y Y N

Network Omni-Path
Architecture

Mellanox EDR
Infiniband

Tofu
6D Torus

19

• Introduction
• Dynamic Loop Scheduling
• Hardware Environment

• Preliminary Results by Parallel FEM
• Strong Scaling
• SAI Preconditioning

• Summary

20

GeoFEM/Cube
• Parallel FEM Code (&

Benchmarks)
• 3D-Static-Elastic-Linear (Solid

Mechanics)
• Performance of Parallel

Preconditioned Iterative Solvers
– 3D Tri-linear Hexahedral

Elements
– Block Diagonal LU + CG
– Fortran90+MPI+OpenMP
– Distributed Data Structure

– MPI，OpenMP，
OpenMP/MPI Hybrid

– Block CRS Format

x

y

z

Uz=0 @ z=Zmin

Ux=0 @ x=Xmin

Uy=0 @ y=Ymin

Uniform Distributed Force in
z-direction @ z=Zmax

(Ny-1) elements
Ny nodes

(Nx-1) elements
Nx nodes

(Nz-1) elements
Nz nodes

x

y

z

Uz=0 @ z=Zmin

Ux=0 @ x=Xmin

Uy=0 @ y=Ymin

Uniform Distributed Force in
z-direction @ z=Zmax

(Ny-1) elements
Ny nodes

(Nx-1) elements
Nx nodes

(Nz-1) elements
Nz nodes

()1,1,1 −+−

() ()1,1,1,, −−−=ζηξ
1 2

34

5 6

78

()1,1,1 −−+

()1,1,1 −++

()1,1,1 +−− ()1,1,1 +−+

()1,1,1 +++()1,1,1 ++−

i

j

()81,

333231

232221

131211

…=

ee

jiji

i

jiji

ji

aaa

aaa

aaa

eeeeejei

ejeiejeiejei

eeejeiee

Configurations (1/2)
• Parallel Programming Model

– Hybrid M×N (HB M×N)
• “M”: Number of OpenMP threads for each MPI process,
• “N”: Number of MPI processes on each CPU/socket.

– FX10 and BDW: Flat MPI, HB 2×8, 4×4, 8×2, 16×1.
• 16 of 18 cores on each socket used for BDW

– Because each core of KNL can host up to four threads, we
applied three configurations, 1T (1 thread per core), 2T (2
threads per core) and 4T (4 threads per core).

• Therefore, M×N=64 for 1T, 128 for 2T, and 256 for 4T.
• (1T) Flat MPI, HB 2×32, 4×16, 8×8, 16×4, 32×2, 64×1
• (2T) HB 2×64, 4×32, 8×16, 16×8, 32×4, 64×2, 128×1
• (4T) only HB 32×8 has been applied to limited cases.
• Flat/Quadrant, Only MCDRAM

– Each core of BDW can host two threads by hyper-threading,
but this capability is deactivated on the Reedbush-U.

21

Configurations (2/2)

• Original
– Original code without any CC-Overlapping. Local

computation of SpMV starts after completion of HALO
exchange.

• Static
– CC-Overlapping with static loop scheduling is applied.

• Dynamic
– CC-Overlapping with dynamic loop scheduling is applied.

– Chunk size has been changed from 10 to 500.

• Measurement: 5 times, Median’s (and error-bar’s)
are shown

22

23

Target Problem

• Performance of GeoFEM/Cube with 3,840 cores of
each system
– 240 nodes of FX10

– 120 nodes (240 sockets) of BDW

– 60 nodes of KNL

• The 1st problem includes 122,880,000 FEM nodes
(=640×480×400), and 368,640,000 DOF
– each CPU/socket of FX10 and BDW has 512,000 nodes

(= 80×80×80), and 1,536,000 DOF.

• The 2nd problem includes 800×600×500 nodes,
and 720,000,000 DOF
– 1003 nodes for each CPU/socket of FX10 and BDW

Preliminary Results: FX10
240 nodes, 3,840 cores, 368,640,000 DOF

(=640×480×400×3),
Improvement of CG from Original Flat MPI

24

-10.0

-5.0

0.0

5.0

10.0

15.0

20.0

S
pe

ed
-U

p
(%

)

HB 2x8 HB 4x4 HB 8x2 HB 16x1

FX10: 240 nodes, 368,640,000 DOF
HB 16x1, Performance Analysis by Fujitsu’s Profiler

(single node)

25

Original Static
Dynamic:

Chunk
Size=100

Dynamic:
Chunk

Size=500

GFLOPS/node 12.59 13.33 14.47 13.82

Memory Throughput
(GB/sec) 61.61 64.86 69.44 68.07

L2 Throughput
(GB/sec) 71.13 75.03 84.15 79.03

sec./(100 iterations) 2.21 2.10 1.93 2.00

Synchronous waiting
time between threads
(sec) Averaged

.229 .122 .073 .061

L2 waiting for FP
Load (sec) Averaged .655 .657 .540 .614

-5.0E-01

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7 Thread 8 Thread 9 Thread 10 Thread 11 Thread 12 Thread 13 Thread 14 Thread 15

[sec]

No instruction commit due to memory access for an integer load instruction No instruction commit due to memory access for a floating-point load instruction
No instruction commit because SP(store port) is full No instruction commit due to L2 cache access for an integer load instruction
No instruction commit due to L2 cache for a floating-point load instruction No instruction commit waiting for an integer instruction to be completed
No instruction commit waiting for a floating-point instruction to be completed No instruction commit waiting for a branch instruction to be completed
No instruction commit waiting for an instruction to be fetched Synchronous waiting time between threads
No instruction commit waiting for a micro-operation to be completed No instruction commit for other reasons

3,840 cores, PA Profiler
FX10: 240 nodes, 368,640,000 DOF

“Original”: 2.21 sec.

26

■ Synchronization Waiting, ■ L2 Load

3,840 cores, PA Profiler
FX10: 240 nodes, 368,640,000 DOF

“Static”: 2.10 sec.

27

-5.0E-01

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7 Thread 8 Thread 9 Thread 10 Thread 11 Thread 12 Thread 13 Thread 14 Thread 15

[sec]

No instruction commit due to memory access for an integer load instruction No instruction commit due to memory access for a floating-point load instruction
No instruction commit because SP(store port) is full No instruction commit due to L2 cache access for an integer load instruction
No instruction commit due to L2 cache for a floating-point load instruction No instruction commit waiting for an integer instruction to be completed
No instruction commit waiting for a floating-point instruction to be completed No instruction commit waiting for a branch instruction to be completed
No instruction commit waiting for an instruction to be fetched Synchronous waiting time between threads
No instruction commit waiting for a micro-operation to be completed No instruction commit for other reasons

■ Synchronization Waiting, ■ L2 Load

-5.0E-01

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7 Thread 8 Thread 9 Thread 10 Thread 11 Thread 12 Thread 13 Thread 14 Thread 15

[sec]

No instruction commit due to memory access for an integer load instruction No instruction commit due to memory access for a floating-point load instruction
No instruction commit because SP(store port) is full No instruction commit due to L2 cache access for an integer load instruction
No instruction commit due to L2 cache for a floating-point load instruction No instruction commit waiting for an integer instruction to be completed
No instruction commit waiting for a floating-point instruction to be completed No instruction commit waiting for a branch instruction to be completed
No instruction commit waiting for an instruction to be fetched Synchronous waiting time between threads
No instruction commit waiting for a micro-operation to be completed No instruction commit for other reasons
One instruction commit Two or three instructions commit due to the number of GPR write ports
Two or three instructions commit for other reasons Four instructions commit

3,840 cores, PA Profiler
FX10: 240 nodes, 368,640,000 DOF

“Dynamic, Csz =100”: 1.93 sec.

28

■ Synchronization Waiting, ■ L2 Load

-5.0E-01

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7 Thread 8 Thread 9 Thread 10 Thread 11 Thread 12 Thread 13 Thread 14 Thread 15

[sec]

No instruction commit due to memory access for an integer load instruction No instruction commit due to memory access for a floating-point load instruction
No instruction commit because SP(store port) is full No instruction commit due to L2 cache access for an integer load instruction
No instruction commit due to L2 cache for a floating-point load instruction No instruction commit waiting for an integer instruction to be completed
No instruction commit waiting for a floating-point instruction to be completed No instruction commit waiting for a branch instruction to be completed
No instruction commit waiting for an instruction to be fetched Synchronous waiting time between threads
No instruction commit waiting for a micro-operation to be completed No instruction commit for other reasons

3,840 cores, PA Profiler
FX10: 240 nodes, 368,640,000 DOF

“Dynamic, Csz =500”: 2.00 sec.

29

■ Synchronization Waiting, ■ L2 Load

Preliminary Results: BDW
120 nodes, 3,840 cores, 368,640,000 DOF

(=640×480×400×3),
Improvement of CG from Original Flat MPI

30

-10.00

-5.00

0.00

5.00

10.00

15.00

20.00

S
pe

ed
-U

p
(%

)

HB 2x8 HB 4x4 HB 8x2 HB 16x1

Preliminary Results: BDW
120 nodes, 3,840 cores, 368,640,000 DOF

(=640×480×400×3),
Computation of Time of CG/Iteration

Error-bar shows max/min values of 5 measurements

31

1.50E-02

1.75E-02

2.00E-02

2.25E-02

2.50E-02

se
c.

Flat MPI HB 2x8 HB 4x4 HB 8x2 HB 16x1

1.50E-02

1.75E-02

2.00E-02

2.25E-02

2.50E-02

se
c.

HB 8x8 (1T) HB 16x8 (2T) HB 32x8 (4T)

Preliminary Results: KNL
60 nodes, 3,840 cores, 368,640,000 DOF

Computation of Time of CG/Iteration
Error-bar shows max/min values of 5 measurements
8 cores/MPI proc, Effects of Thread/Core (1T, 2T, 4T)

32

Preliminary Results: KNL/2T
60 nodes, 3,840 cores, 368,640,000 DOF
Improvement of CG from Original HB 2×64

33

-10.0

-5.0

0.0

5.0

10.0

15.0

20.0

S
pe

ed
-U

p
(%

)

HB 4x32 HB 8x16 HB 16x8 HB 32x4 HB 64x2 HB 128x1

Preliminary Results: Best Cases
3,840 cores, 368,640,000 DOF

Computation of Time of CG/Iteration
Error-bar shows max/min values of 5 measurements

34

1.50E-02

1.75E-02

2.00E-02

2.25E-02

2.50E-02

se
c.

FX10: HB 16x1 BDW: HB 8x2 KNL: HB 64x2 (2T)

Preliminary Results: Best Cases
3,840 cores, 368,640,000 DOF

Improvement of CG from Original Cases

35

-10.00

-5.00

0.00

5.00

10.00

15.00

20.00

25.00

S
pe

ed
-U

p
(%

)

FX10: HB 16x1 BDW: HB 8x2 KNL: HB 64x2 (2T)

Preliminary Results: Best Cases
3,840 cores, 368,640,000 DOF

Improvement of CG from Original Cases

36

-10.00

-5.00

0.00

5.00

10.00

15.00

20.00

25.00

S
pe

ed
-U

p
(%

)

FX10: HB 16x1 BDW: HB 8x2 KNL: HB 64x2 (2T)

Preliminary Results: Original Cases
3,840 cores, 368,640,000 DOF

Communication Overhead by Collective/Point-to-Point
Communications

37

0%

20%

40%

60%

80%

100%

FX10: HB 16x1 BDW: HB 8x2 KNL: HB 64x2
(2T)

Rest Send/Recv Allreduce

7.5% 4.0% 14.6%

38

Features

Effect of
Dynamic

Scheduling

Optimum
Chunk
Size

Notes

FX10 Medium 100 Memory Throughput

BDW Small 500+ Low Comm. Overhead
Small number of threads.

KNL Large 300-500

Effects are significant for
HB 64x2, 128x1, where
loss of performance by
communications on
master thread is rather
smaller.

Preliminary Results: Best Cases
3,840 cores, 720,000,000 DOF

Improvement of CG from Original Cases
Effects are Smaller (DOF/MPI Proc. is larger)

39

-10.00

-5.00

0.00

5.00

10.00

15.00

20.00

25.00

S
pe

ed
-U

p
(%

)

FX10: HB 4x4 BDW: HB 16x1 KNL: HB 64x2 (2T)

40

• Introduction
• Dynamic Loop Scheduling
• Hardware Environment

• Preliminary Results by Parallel FEM (GeoFEM/Cube)
• Strong Scaling
• SAI Preconditioning

• Summary

41

Target Problem

• 2563 FEM Nodes, 50,331,648 DOF
• Strong Scaling

– FX10: 2-1,024 nodes (32-16,384 cores)

– BDW: 2-512 sockets, 1-256 nodes (32-8,192 cores)
• Reedbush-U has only 420 nodes of BDW

– KNL: 4-256 nodes (256-16,384 cores)

Core#

S
pe

ed
-U

p

Ideal Line=
100%
< 100%

> 100%
• Parallel Performance

– 100%: on the ideal
line

– < 100%: BELOW

– > 100%: ABOVE

Strong Scaling: KNL
Parallel Performance (%)

50,331,648 DOF, 256-16,384 cores
Computation Time of Flat MPI at 256 cores: 100%

HB 8×8 (1T) and HB 16×8 (2T)
1T is better, if Core# increases

42

0.0

20.0

40.0

60.0

80.0

100.0

120.0

256 512 1024 2048 4096 8192 16384

P
ar

al
le

l P
er

fo
rm

an
ce

 (%
)

Total Core #

HB 8x8 (1T), Csz=100 HB 8x8 (1T), Csz=500
HB 16x8 (2T), Csz=100 HB 16x8 (2T), Csz=500

Strong Scaling
Parallel Performance

(%)
BEST case for each

HB MxN
50,331,648 DOF

Computation Time of Flat
MPI at Min.# cores:

100%

43

0.0

20.0

40.0

60.0

80.0

100.0

120.0

32 64 128 256 512 1024 2048 4096 8192 16384

P
ar

al
le

l P
er

fo
rm

an
ce

 (%
)

Total Core #

Flat MPI: Original HB 2x8: Csz=500 HB 4x4: Csz=100
HB 8x2: Csz=100 HB 16x1: Csz=500

0.0

20.0

40.0

60.0

80.0

100.0

120.0

32 64 128 256 512 1024 2048 4096 8192

P
ar

al
le

l P
er

fo
rm

an
ce

 (%
)

Total Core #

Flat MPI: Static HB 2x8: Csz=500 HB 4x4: Csz=500
HB 8x2: Csz=100 HB 16x1: Csz=500

0.0

20.0

40.0

60.0

80.0

100.0

120.0

256 512 1024 2048 4096 8192 16384

P
ar

al
le

l P
er

fo
rm

an
ce

 (%
)

Total Core #

Flat MPI: Original HB 2x32: Csz=500 HB 4x16: Csz=100 HB 8x8: Csz=100
HB 16x4: Csz=500 HB 32x2: Csz=500 HB 64x1: Csz=500

FX10

BDW

KNL

This difference between
BDW and KNL might be
because difference of
performance between
Infiniband EDR and Omni-
Path Architecture.

0.0

20.0

40.0

60.0

80.0

100.0

120.0

32 64 128 256 512 1024 2048 4096 8192 16384

P
ar

al
le

l P
er

fo
rm

an
ce

 (%
)

Total Core #

HB 16x1: Original Static Csz=100 Csz=500

Strong Scaling
Parallel Performance

(%)
Effect of Dynamic Loop

Scheduling
50,331,648 DOF

Computation Time of Flat
MPI at Min.# cores:

100%

44

0.0

20.0

40.0

60.0

80.0

100.0

120.0

32 64 128 256 512 1024 2048 4096 8192

P
ar

al
le

l P
er

fo
rm

an
ce

 (%
)

Total Core #

HB 8x2: Original Static Csz=100 Csz=500

FX10: HB 16x1

BDW: HB 8x2

0.0

20.0

40.0

60.0

80.0

100.0

120.0

256 512 1024 2048 4096 8192 16384

P
ar

al
le

l P
er

fo
rm

an
ce

 (%
)

HB 64x1/1T: Original Static Csz=100 Csz=500

KNL: HB 64x1 (1T)

Effect of Dynamic Loop Scheduling
with more than 8,192 cores

• FX10: 20%-40%

• BDW: 6%-10%

• KNL with HB 8×8 (1T): 20%-30%

• KNL with HB 64×1 (1T): 40%-50%

45

• Introduction
• Dynamic Loop Scheduling
• Hardware Environment

• Preliminary Results by Parallel FEM (GeoFEM/Cube)
• Strong Scaling
• SAI Preconditioning (Sparse Approximate

Inverse)

• Summary

46

Next Target
• SAI (Sparse Approximate Inverse)

– Mat-Vec. Multiplication for Sparse Approximate Inverse
Matrix

– Much Easier than ILU (failed)

– Old, but not so bad. Suitable for GPU.

– SAI: Various Approaches: SPAI (Explicit SAI) adopted

47

SAI (Sparse Approx. Inverse)

• Preconditioning method for sparse matrices derived
from localized-type scientific applications, such as
FEM, FDM, FVM etc.

• Define inverse (preconditioned) matrix [M]

explicitly.
• Even if original matrix [A] is sparse, inverse is usually

dense due to fill-in.
• Sparse approximate inverse (SAI) is an approximate

inverse matrix, which has as similar sparsity as the
original matrix has.

)()(AsparsityMsparsity ≈

48

GeoFEM-SAI/Cube
• Parallel FEM Code (& Benchmarks)
• 3D-Static-Elastic-Linear (Solid Mechanics)
• Performance of Parallel Preconditioned Iterative

Solvers

– 3D Tri-linear Hex. Elements
– SAI + BiCGSTAB

• Dropping Tolerance after QR
Factorization: t

– Fortran90+MPI+OpenMP
– Distributed Data Structure

– MPI，OpenMP，
OpenMP/MPI Hybrid

– Block CRS Format x

y

z

Uz=0 @ z=Zmin

Ux=0 @ x=Xmin

Uy=0 @ y=Ymin

Uniform Distributed Force in
z-direction @ z=Zmax

(Ny-1) elements
Ny nodes

(Nx-1) elements
Nx nodes

(Nz-1) elements
Nz nodes

x

y

z

Uz=0 @ z=Zmin

Ux=0 @ x=Xmin

Uy=0 @ y=Ymin

Uniform Distributed Force in
z-direction @ z=Zmax

(Ny-1) elements
Ny nodes

(Nx-1) elements
Nx nodes

(Nz-1) elements
Nz nodes

49

Target Problem

• 393,216,000 FEM nodes (=960×640×640),
1,179,648,000 DOF
– each node of FX10 has 512,000 nodes (=80×80×80), and

1,536,000 DOF
– Dropping tolerance e is set to 0.10.
– Number of non-zero components of M is 25.8% of that of

original A.

• Using 12,288 cores
– FX10: 768 nodes
– BDW: 768 sockets, 384 nodes
– KNL: 192 nodes, 2 threads per core (2T)

FX10: 1,179,648,000 DOF
768 nodes, 12,288 cores

Speed-Up compared to “Original” HB 8x2, t=0.10

50-10.0

-5.0

0.0

5.0

10.0

15.0

20.0

S
pe

ed
-U

p
(%

)

HB 2x8 HB 4x4 HB 8x2 HB 16x1

-10.0

-5.0

0.0

5.0

10.0

15.0

20.0

S
pe

ed
-U

p
(%

)

HB 2x8 HB 4x4 HB 8x2 HB 16x1

Reedbush -U (BDW):
1,179,648,000 DOF

384 nodes, 12,288 cores
Speed-Up compared to “Original” HB 8x2, t=0.10

51

-10.0

-5.0

0.0

5.0

10.0

15.0

20.0

S
pe

ed
-U

p
(%

)

HB 4x32 HB 8x16 HB 16x8 HB 32x4 HB 64x2 HB 128x1

Oakforest-PACS (KNL):
1,179,648,000 DOF

192 nodes, 12,288 cores, 2T/core
Speed-Up compared to “Original” HB 16x8, t=0.10

52

53

• Introduction
• Dynamic Loop Scheduling
• Hardware Environment

• Preliminary Results by Parallel FEM (GeoFEM/Cube)
• Strong Scaling
• SAI Preconditioning

• Summary

54

Summary (1/2)
• CC-Overlapping by Dyn. Loop Scheduling of OpenMP
• SpMV of CG/BiCGSTAB in Parallel FEM (GeoFEM)

– Significant Effects by Dynamic Loop Scheduling

– Improvement of Performance by 40%-50% in strong scaling
using up to 16,384 cores of FX10 and KNL Clusters.

– On the contrast, improvement of performance is very small
on Intel Broadwell (BDW) cluster.

– Generally, effect of CC-Overlapping with dynamic loop
scheduling is significant, if thread number for each MPI
process is larger.

– Therefore, developed method is expected to be useful for
manycore architectures with O(102) cores, such as Intel
Xeon Phi.

55

Summary (2/2)
• SAI-BiCGSTAB

– 15%-20% improvement of performance has been obtained
on 12,288 cores of Fujitsu FX10 and KNL cluster.

• CC-Overlapping with dynamic loop scheduling
improves the performance of parallel iterative solvers
significantly, although algorithm is very simple.

• Future Work
– More complicated preconditioning method, such as ILU, MG

– Combination with Pipelined Method

– Automatic selection of optimum Chunk Size

– Further Optimization: Strong Scaling on KNL Cluster

– The developed method might not work on NUMA
• Appropriate runtime software will be needed.

