Introduction to Parallel FEM in C
Parallel Data Structure

Kengo Nakajima
Information Technology Center

Technical & Scientific Computing Il (4820-1028)
Seminar on Computer Science |l (4810-1205)
Hybrid Distributed Parallel Computing (3747-111)

Intro-pFEM

Parallel Computing

e Faster, Larger & More Complicated

o Scalabllity

— Solving N* scale problem using N* computational
resources during same computation time
 for large-scale problems: Weak Scaling
» e.g. CG solver: more iterations needed for larger problems

— Solving a problem using N* computational resources
during 1/N computation time
 for faster computation: Strong Scaling

Intro-pFEM

What is Parallel Computing ? (1/2)

e to solve larger problems faster

Homogeneous/Heterogeneous
Porous Media

Lawrence Livermore National Laboratory

very fine meshes are

A 4

Homogeneous Heterogeneous required for Simu_lations of
heterogeneous field.

Intro-pFEM

What is Parallel Computing ? (2/2)

 PC with 1GB memory : 1M meshes are the limit for FEM

— Southwest Japan with 1,000km x 1,000km x 100km in 1km mesh
-> 108 meshes

e Large Data -> Domain Decomposition -> Local Operation
* Inter-Domain Communication for Global Operation

partitioning
Data Data
Lar ge-ScaI € Communication
Data Local | Locd
Data Data L ocal Loca
Data Data

Intro-pFEM

What Is Communication ?

o Parallel Computing -> Local Operations

« Communications are required in Global Operations
for Consistency.

Intro pFEM

Operations In Parallel FEM
SPMD: Single -Program Multiple -Data

Large Scale Data -> partitioned into Distributed Local Data Sets.

FEM code can assembles coefficient matrix for each local data set :
this part could be completely local, same as serial operations

Global Operations & Communications happen only in Linear Solvers
dot products, matrix-vector multiply, preconditioning

~_ i
Local Data

— —

— i
Local Data

—— —

— 3
Local Data

S —— —

e i
Local Data

S — o

Intro-pFEM

Parallel FEM Procedures

 Design on “Local Data Structure” Is important
— for SPMD-type operations in the previous page

o Matrix Generation
* Preconditioned Iterative Solvers for Linear Equations

Intro pFEM

Bi-Linear Square Elements
Values are defined on each node

=

2

|G

O

=

(€8]

divide into two domains by
“node-based” manner, where
number of “nodes (vertices)” are
balanced.

Local information is not enough
for matrix assembling.

Information of overlapped
elements and connected nodes
are required for matrix

9 assembling on boundary nodes.

Intro pFEM

Local Data of Parallel FEM

e Node-based partitioning for IC/ILU type preconditioning methods

e Local data includes information for :
e Nodes originally assigned to the partition/PE

o Elements which include the nodes : Element-based operations (Matrix
Assemble) are allowed for fluid/structure subsystems.

e All nodes which form the elements but out of the partition

e Nodes are classified into the following 3 categories from the

viewpoint of the message passing

e Internal nodes originally assigned nodes

o External nodes in the overlapped elements but out of the partition
e Boundary nodes external nodes of other partition

e Communication table between partitions

e NO global information required except partition-to-partition
connectivity

Node -based Partitioning
Internal nodes - elements - external nodes

PE#1 PE#0
21 22 23 24 25
O O O O o
17 18 19
160 O O Q O 20
12 13 14
K L O O O 15
7 8 9
6 @ ® O O O10
@ @ O O O
1 2 3 4 5
PE#3 PE#2

Intro pFEM

PE#1
4 5 6 12
O O O O
1 O O O O 11
2 3
@ @ O O
1 8 9 10
11 10 12
O O O
5 @ lbﬁ O 9
3@ o O 8
4
@ @ O
1 2 1
PE#3

O—0O—=06
4 5

O—O0—=O

1 2 3
PE#2

10

Node -based Partitioning
Internal nodes - elements - external nodes

®Partitioned nodes themselves (Internal Nodes) M

®Elements which include Internal Nodes REZSHEZR

®External Nodes included in the Elements 4} 5=

®Info of External Nodes are required for completely local
element—based operations on each processor.

Intro pFEM

15 6 7
O—O0—0
O—0—0—0
4 13 4 5
&——O—0—0
10 1 2 3
&—O0—0—0
8 9 11 12

In overlapped region among partitions.

PER

PERO

21
o

25

160

1Y

15

Q10

@

e

PEI3

H

® ()—()—() ®

5—9—03

30—0—0¢s

11

We do not need communication

during matrix assemble !

®Partitioned nodes themselves (Internal Nodes)
®Elements which include Internal Nodes

®External Nodes included in the Elements
In overlapped region among partitions.

®Info of External Nodes are required for completely local
element—based operations on each processor.

15 6 7 PENI PER0 5 s
. P ¢ x x alls e HH_&
2 3 14 Tis 4 5
o——o" 0" H o o o
O f*/ \/J \/) ° 7 8] 10 10 1 2 3
/84 /\/k /V\l /\ 5 " P . "o 12 ¢ \g, ?I; O
e e L T
./\,\/ VN o—o to—o—o T ;Is .
@, QO O 1 2 3 a 5 il
8 9 11 12 PER PER2 1 P_éﬂ 7 7 'Iilzz 3

Parallel Computing in FEM
SPMD: Single -Program Multiple -Data

FEM code

Local Data Linear Solvers

Local Data FEM code Linear Solvers

FEM code Linear Solvers

Intro-pFEM 13

Local Data

Local Data

Parallel Computing in FEM S
SPMD: Single -Program Multiple -Data cese

FEM code Linear Solvers

IB8I)S
———

ey . s

FEM code Linear Solvers

Linear Solvers

PE#3

Intro-pFEM 14

Parallel Computing in FEM
SPMD: Single -Program Multiple -Data

15 6 1

FEM code Linear Solvers

Local Data

FEM code

Linear Solvers

Local Data

FEM code Linear Solvers

Local Data

10— O— @8 Local Data

Intro-pFEM 1 2 7 15

Parallel Computing in FEM
SPMD: Single -Program Multiple -Data

FEM code

Linear Solvers

FEM code Linear Solvers

FEM code

Linear Solvers

16

Intro-pFEM

Parallel Computing in FEM
SPMD: Single -Program Multiple -Data

Local Data FEM code Linear Solvers

FEM code

Local Data Linear Solvers

FEM code Linear Solvers

MPI
17

Local Data

Local Data

Intro-pFEM

What is Communications ?

e to get information of “external nodes” from external
partitions (local data)

e “Communication tables” contain the information

Intro-pFEM

18

Intro-pFEM

1D FEM:

12 nodes/11 elem’s/3 domains

19

Intro-pFEM

1D FEM: 12 nodes/11 elem’s /3 domains
= ExATTHI: Tri-Diagonal Matrix

himh

0)

0
1

1

2
2

3
3

4
4

5
5

6
6

(7] 7
7
(8] 8

8

9
9

10
10

11

Intro-pFEM 21

“Internal Nodes” should be balanced

0
0
1
1 #0O
2
2
3
3
4
4
5
5 #1
6
6
(7] 7
7
(8] 8
8
9
9
10 #2
10
11

Intro-pFEM

10

11

Matrices are incomplete !

#0

#1

#2

22

Intro-pFEM 23

Connected Elements + External Nodes

#0

0
1
2
3

#1

I~ (o)) |on | (o8}

#2

Intro-pFEM 24

1D FEM: 12 nodes/11 elem’s/3 domains

0
0
1
. #0
2
2
3
3
4
5
#1
6
7
8
9
11

Intro-pFEM

1D FEM: 12 nodes/11 elem’s/3 domains

25

Intro-pFEM 26

Local Numbering for SPMD

Numbering of internal nodes is 1-N (0-N-1), same operations
In serial program can be applied. How about numbering of
external nodes ?

Intro pFEM

PE: Processing Element S P M D

Processor, Domain, Process Single Program Multiple Data
mpirun —-np M <Program>

[| I

PE #0 PE #1 PE #2 PE #M-1

27

Program Program

Data #0 Data #1

Each process does same operation for different data

Large-scale data is decomposed, and each part is computed by each process
It is ideal that parallel program is not different from serial one except communication.

Program 00000 Program

Data #2 Data #M-1

Intro-pFEM

Local Numbering for SPMD

Numbering of external nodes: N+1, N+2 (N,N+1)

000090
000006906

000090

28

Intro-pFEM 29

1D FEM: 12 nodes/11 elem’s/3 domains

Integration on each element, element matrix -> global matrix
Operations can be done by info. of internal/external nodes
and elements which include these nodes

#0

2 3

0 1

#1

Intro-pFEM

Finite Element Procedures

 [nitialization
— Control Data
— Node, Connectivity of Elements (N: Node#, NE: Elem#)
— Initialization of Arrays (Global/Element Matrices)
— Element-Global Matrix Mapping (Index, Item)

e Generation of Matrix

— Element-by-Element Operations (do icel= 1, NE)
e Element matrices
o Accumulation to global matrix

— Boundary Conditions

e Linear Solver
— Conjugate Gradient Method

30

Intro-pFEM 31

Preconditioned CG Solver

e Preconditioning

Compute r®= b-[A]x(®

SO 45 Ly 2y e | Diagonal Scaling/Point Jacobi
solve [M]zG D= p-1) _
Piy= T 0D e Parallel operations are
if i=1 i d i
pl= 70 required in
eéﬁ_ o o Dot Products
b= ZG1) 4 B, pt-D Mat-Vec. Multiplication
Sacki | SpMV: Sparse Mat-Vec. Mult.
q(1)= [A]p(l) ~ ~
0y = Py /pHigt b 0 .. 0 O
xH= xE1D 4 g, pi
ritl= pGE-1 — q,q@ 0 b, 0 0
check convergence |z [M]:
end 0 0 D, O
0 0 .. 0 Dy

Intro-pFEM

Preconditioning, DAXPY

Local Operations by Only Internal Points: Parallel

Processing is possible L
0 1
//—= {z}= [Minv]{r}
*/ 2 3
for (i=0; i<N; i++) {
WLZI[i] = WIDD][i] * W[RI[i]; 3
} 0
4
/% o !
//—— {x}= {x} + ALPHA*{p} DAXPY: double a{x} plus {y} 2
// {r}= {r} - ALPHAx{q} 6
for (i=0; i<N; i++) { 7
ULil] += Alpha * W[PI[i];
WIRILi] -= Alpha * WLQI[i]; 8 0
}
9 1
10 5
11 3

Intro-pFEM

Dot Products

Global Summation needed: Communicatio

0
/¥ 1
//—— ALPHA= RHO / {p} {a}
*/ 2
C1 =0.0;
for (i=0; i<N; i++) { 3
Gl += W[PIL[i] * W[Q]L[i];
] 4
Alpha = Rho / C1; 5
6
4
8
9
10
11

w | N = | O

w | N = | O

w | N = | O

33

MPI Programming 34

P#0 |A0|BO|CO|DO P#0 | op.A0-A3|0p.B0-B3|0p.CO-C3|0p.DO-D3
MP|_Reduce] s
s P#2 |A2|B2|C2|D2 P#2
P#3 | A3|B3|C3|D3 P#3

 Reduces values on all processes to a single value
— Summation, Product, Max, Min etc.

e MPI_Reduce (sendbuf, recvbuf, count, datatype, op, root, comm)

— sendbuf choice I starting address of send buffer
- recvbuf choice © starting address receive buffer
type is defined by "datatype”
— count int T number of elements in send/receive buffer
— datatype MPI_Datatype I data type of elements of send/recive buffer
FORTRAN MPI_INTEGER, MPI_REAL, MPI_DOUBLE_PRECISION, MPI_CHARACTER etc.
C MPI_INT, MPI_FLOAT, MPI_DOUBLE, MPI_CHAR etc
- op MPI_Op I reduce operation

MPI_MAX, MPI_MIN, MPI_SUM, MPI_PROD, MPI_TLAND, MPI_BAND etc
Users can define operations by MPI_OP_CREATE

- root int I rank of root process
— comm MPI_Comm I communicator

MPI Programming 35

P#0 | A0 | B0 |CO|DO P#0 | A0 |B0|CO|DO

I\/I P I BcaSt P#1 Broadcast P#L | A0 |BO|CO|DO
_ P#2 P#2 | A0 |B0|co|Do

P#3 P#3 | A0 |B0|co|Do

 Broadcasts a message from the process with rank "root" to all other
processes of the communicator

e MPI_Bcast (buffer, count,datatype, root, comm)
- buffer choice 1I/0 starting address of buffer
type is defined by "datatype”

— count Int I number of elements in send/recv buffer

— datatype MPI_Datatype I data type of elements of send/recv buffer
FORTRAN MPI_INTEGER, MPI_REAL, MPI_DOUBLE_PRECISION, MPI_CHARACTER etc.
C MPI_INT, MPI_FLOAT, MPI_DOUBLE, MPI_CHAR etc.

— root int I rank of root process

— comm MPI_Comm I communicator

MPI Programming 36

P#0 | AO|BO|CO|DO P#0 | op.A0-A3 | 0p.B0-B3 |0op.C0O-C3|op.DO-D3
All reduce
re l ICe P#1 |A1|B1|C1|D1 P#1 |op.A0-A3 | 0p.BO-B3 |0p.CO-C3|0p.DO-D3
—_— P#2 | A2|B2|C2|D2 P#2 | op.A0-A3 | 0p.B0-B3 |0p.C0O-C3|0p.DO-D3
P#3 | A3|B3|C3|D3 P#3 | op.A0-A3 | 0p.B0-B3 |0p.CO-C3|0p.D0O-D3

« MPI_Reduce + MPI_Bcast

e Summation (of dot products) and MAX/MIN values are likely to utilized in
each process

e call MPI_Allreduce

(sendbuf, recvbuf, count, datatype, op, comm)
— sendbuf choice T starting address of send buffer
— recvbuf choice © starting address receive buffer

type is defined by "datatype”

— count Int T number of elements in send/recv buffer
— datatype MPI_Datatype I data type of elements of send/recv buffer
- op MPI_Op I reduce operation

— comm MPI_Comm I communicator

MPI Programming

“op” of MPI_Reduce/Allreduce

MPI_Reduce
(sendbuf, recvbuf, count, datatype, op, root, comm)

e MPI_MAX, MPI_MIN Max, Min
e MPI_SUM, MPI_PROD Summation, Product
e MPI_LAND Logical AND

Intro-pFEM 38

Preconditioned CG Solver

e Preconditioning

Compute r®= b-[A]x(®

SO 45 Ly 2y e | Diagonal Scaling/Point Jacobi
solve [M]zG D= p-1) _
Piy= T 0D e Parallel operations are
if i=1 i d i
pl= 70 required in
eéﬁ_ o o Dot Products
b= ZG1) 4 B, pt-D Mat-Vec. Multiplication
Sacki | SpMV: Sparse Mat-Vec. Mult.
q(1)= [A]p(l) ~ ~
0y = Py /pHigt b 0 .. 0 O
xH= xE1D 4 g, pi
ritl= pGE-1 — q,q@ 0 b, 0 0
check convergence |z [M]:
end 0 0 D, O
0 0 .. 0 Dy

Intro-pFEM

Matrix-Vector Products
Values at External Points: P-to-P Communication

for (i=0;i<N;i++) {

WIQI[i] = Diagli] * W[P]I[i]l;

for (j=Index[i]; j<Index[i+1]; j++) {
WLQI[i] += AMat[jI=W[P][Item[j]1];
}

}

39

Intro-pFEM

Mat-Vec Products: Local Op. Possible

O I N OO 0|~ W[N]+ |O

=
o

Ol oI N OO0 | P> |W | DN|F|O

10

11

40

Intro-pFEM

Mat-Vec Products: Local Op. Possible

w | NN = O

~N | o | o B

00]

10

11

w | N = | O

~N (O | o b

00

10

11

41

Intro-pFEM

Mat-Vec Products: Local Op. Possible

0 0
1 1
2 2
3 3
0 0
1 B 1
2 - 2
3 3
0 0
1 1
2 2
3 3

42

Mat-Vec Products: Local Op. #0

g 8

0

1
2
3

W | DN |O

Mat-Vec Products: Local Op. #1

0 0
1 B 1
2 - 2
3 3
. 0 0
1 _ 1
2 - 2
3 3
4
5 o0 0066060

Mat-Vec Products: Local Op. #2

0 0
1 1
2 2
3 3

'

w | N = | O

WD | O

Intro pFEM

1D FEM: 12 nodes/11 elem’s/3 domains

46

Intro pFEM

1D FEM: 12 nodes/11 elem’s/3 domains

Local ID: Starting from O for node and elem at each domain

47

1D FEM: 12 nodes/11 elem’s/3 domains

Internal/External Nodes

-0—0
T
o

#1

w0 Q-0 070
—

—G—G—T
o

#2

—©O
|
0

3

inaza

MPI Programming

What is Point-to -Point

Communication ?
e Collective Communication

— MPI_Reduce, MPI_Scatter/Gather etc.
— Communications with all processes in the communicator

— Application Area
 BEM, Spectral Method, MD: global interactions are considered
e Dot products, MAX/MIN: Global Summation & Comparison

e Point-to-Point

— MPI_Send, MPIl_Recv 7 |) T
— Communication with limited = 0500000
processes) i _L
 Neighbors :

— Application Area
« FEM, FDM: Localized Method

49

Fundamental MPI

SEND: sending from boundary nodes
Send continuous data to send buffer of neighbors

e MPI_Isend

(sendbuf, count, datatype, dest, tag, comm, request)
- sendbuf choice starting address of sending buffer

- count I number of elements sent to each process
data type of elements of sending buffer
rank of destination

— datatype T
— dest I

I
I
I
I

oO—0O0—=0 9 11
10 9 11 12
5 .—.6—() 9 T T
36— ©® O s 8 6
4 I4 :[5
—0 O O O
1) 7 7 1 2 3
PE#1 PE#2

50

MPI Programming

MPI Isend

* Begins a non-blocking send

— Send the contents of sending buffer (starting from sendbuf, number of messages: count)
to dest with tag .

— Contents of sending buffer cannot be modified before calling corresponding MPI_Waitall.

e MPI Isend
(sendbuf, count, datatype, dest, tag, comm, request)

— sendbuf choice I starting address of sending buffer

— count int I number of elements in sending buffer

— datatype MPI_Datatype I datatype of each sending buffer element
— dest int T rank of destination

- tag int I message tag

This integer can be used by the application to distinguish
messages. Communication occurs if tag’ s of
MPI_Isend and MPI_TIrecv are matched.

Usually tag is set to be “0” (in this class),
- comm MPI_Comm I communicator
— request MPI_Request O communication request array used in MPI_Waitall

Fundamental MPI

RECV: recelving to external nodes
Recv. continuous data to recv. buffer from neighbor S

e MPI Irecv
(recvbuf, count, datatype, dest, tag, comm, request)

- recvbuf choice I starting address of receiving buffer

- count I I number of elements in receiving buffer
—~ datatype I I data type of elements of receiving buffer
- source I I rank of source

52

MPI Programming

MPI lrecv

* Begins a non-blocking receive

— Recelving the contents of receiving buffer (starting from recvbu£, number of messages:
count) from source with tag .

— Contents of receiving buffer cannot be used before calling corresponding MPI_Waitall.

e MPI_TIrecv
(recvbuf, count, datatype, source, tag, comm, request)

— recvbuf choice I starting address of receiving buffer

— count int I number of elements in receiving buffer

— datatype MPI_Datatype I datatype of each receiving buffer element
— source int I rank of source

- tag int I message tag

This integer can be used by the application to distinguish
messages. Communication occurs if tag’ s of
MPI_Isend and MPI_TIrecv are matched.

Usually tag is set to be “0” (in this class),
- comm MPI_Comm I communicator
— request MPI_Request O communication request array used in MPI_Waitall

MPI Programming

MPI Waitall

e MPI_Waitall blocks until all comm’s, associated with request in the array,
complete. It is used for synchronizing MPI_Isend and MPI_Irecv in this class.

* At sending phase, contents of sending buffer cannot be modified before calling
corresponding MPI_Waitall. At receiving phase, contents of receiving buffer
cannot be used before calling corresponding MPI_Waitall.

e MPI_ IsendandMPI_Irecv can be synchronized simultaneously with a single
MPI_Waitall if it iS consitent.
— Same request should be used in MPI_Isend and MPI_Irecv.
o Its operation is similar to that of MPI_Barrier but, MPI_Waitall can not be

replaced by MPI_Barrier.

— Possible troubles using MPI_Barrier instead of MPI_Waitall: Contents of request and
status are not updated properly, very slow operations etc.

e MPI_Waitall (count, request, status)

- count int I number of processes to be synchronized
— request MPI_Request I/0 comm. request used inMPI_Waitall (array size: count)
- status MPI_Status O array of status objects

MPI_STATUS_SIZE: defined in ‘mpif.h’, ‘mpi.h’

Intro pFEM

55

Node-based Partitioning
Internal nodes - elements - external nodes

PE#1 PE#0
21 22 23 24 25
O O O O o
17 18 19
160 O O Q O 20
12 13 14
K L O O O 15
7 8 9
6 @ ® O O O10
@ @ O O O
1 2 3 4 5
PE#3 PE#2

PE#1
4 5 6 12 15 6 1
O O O O O O O
PE#0
1 O O O O11 O O O O
2 3 14 13 4 4]
@ @ O O @ O O O
7 8 9 10 10 1 2 3
11 10 12
O O O
5 @ .6 O 9
3@ o O 8
4
@ @ O
1 2 1

Intro pFEM 56

Description of Distributed Local Data

1.0 9 n /1)2 |nternal/External Points
T T — Numbering: Starting from internal pts,
I then external pts after that
8 @) O O6 _
4 |9 * Neighbors
—O—0O——=O0 — Shares overlapped meshes
12 3 — Number and ID of neighbors

e External Points

— From where, how many, and which
external points are received/imported ?

e Boundary Points

— To where, how many and which
boundary points are sent/exported ?

Intro pFEM

External Nodes (4}5) : RECEIVE

PE#2 : receive Information for “external nodes”

57

Intro pFEM

Boundary Nodes (15 s) : SEND

PE#2 : send information on “boundary nodes”

15 6 7
Oo—O0——=0
PE#0
O—O—0—"™20
14 13 4 5
)) f)
\—y p\—y S
10 J1 2 |3
11 10 12
O—0O—-0

S2-r 59

| Distributed Local Data Structure for
Parallel Computation

 Distributed local data structure for domain-to-doain
communications has been introduced, which is appropriate

for such applications with sparse coefficient matrices (e.g.

FDM, FEM, FVM etc.).

— SPMD
— Local Numbering: Internal pts to External pts

— Generalized communication table

e Everything Is easy, If proper data structure Is defined:
— Values at boundary pts are copied into sending buffers

— Send/Recv
— Values at external pts are updated through receiving buffers

