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Preconditioning Methods (of
Krylov lterative Solvers) for Real-
World Applications

 are the most critical issues in scientific computing

« are based on
— Global Information: condition number, matrix properties etc.
— Local Information: properties of elements (shape, size ...)

* require knowledge of
— background physics
— applications



Technical Issues of “Parallel”
Preconditioners in FEM

* Block Jacobi type Localized Preconditioners

« Simple problems can easily converge by simple
preconditioners with excellent parallel efficiency.

* Difficult (ill-conditioned) prob’s cannot easily converge

— Effect of domain decomposition on convergence is significant,
especially for ill-conditioned problems.
» Block Jacobi-type localized preconditioiners
* More domains, more iterations

— There are some remedies (e.g. deep fill-ins, deep overlapping)
— ASDD does not work well for really ill-conditioned problems.
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Iterations for Convergence
BILU(0)-GPBiCG with 8 domains
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Remedies for Domain
Decomposition

« Extended Depth of Overlapped Elements
— Selective Fill-ins, Selective Overlapping [KN 2007]

 adaptive preconditioning/domain decomposition methods
which utilize features of FEM procedures

 PHIDAL/HID (Hierarchical Interface
Decomposition) [Henon & Saad 2007]

. Extended HID [KN 2010]



Extension of Depth of Overlapping

PE#1 PE#0
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ParCo09

Number of Iterations for Convergence

BILU(0)-GPBICG, 8-domains (PE’s)
Effect of Extended Depth of Overlapping

Depth of E=100 E=103
Overlap
EE 0 52 158
1 33 103
________ 2 32 100
3 32 97
4 31 82
-------- SRR




* Multilevel Domain Decomposition
— Extension of Nested Dissection

HID: Hierarchical Interface
Decomposition [Henon & Saad 2007]

* Non-overlapping at each level. Connectors, Separators
 Suitable for Parallel Preconditioning Method
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Parallel ILU in HID for each
Connector at each LEVEL

 The unknowns are A
reordered according to
their level numbers, from
the lowest to highest. Y

Level-1

* The block structure of the Level-2
reordered matrix leads to
natural parallelism if Level-4$
ILU/IC decompositions or
forward/backward
substitution processes
are applied.
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Communications at Each Level
Forward Substitutions

do lev= 1, LEVELtot
do 1= LEVindex(lev-1)+1, LEVindex(lev)
SWil= W({3*1-2,R); Sw2= WW(3*1-1,R); SW3= W(3*1 ,R)
isL= INL(1-1)+1; i1elL= INL(Q)
do j= 1sL, 1eL

k= T1ALC(j}
X1= WW%%*k—Z,R);_XZ: WW(3*k-1,R); X3= WW(3*k ,R)
SW1= SW1 - AL(9*jJ-8)*X1 - AL(9*)J-7)*X2 - AL(9*]-6)*X3
SW2= SW2 - AL(9*jJ-5)*X1 - AL(9*j-4)*X2 - AL(9*]-3)*X3
SW3= SW3 - AL(9*)-2)*X1 - AL(9*jJ-1)*X2 - AL(9*] *X3

enddo

X1= SW1; X2= SW2; X3= SW3

X2= X2 - ALU(9*1-5)*X1 )

X3= X3 - ALU(9*1-2)*X1 - ALU(9*1-1)*X2

X3= ALU(9*i1 )* X3 )
X2= ALUC9*i-4 *g X2 - ALU(9*i-3)*X3 ) ]
X1= ALUC9*i-8)*( X1 - ALU(9*i-6)*X3 = ALU(9*i-7)*X2)

WW(3*1-2,R)= X1; W(3*1-1,R)= X2; WW(3*1 ,R)= X3
enddo

Additional
omm.
call SOLVER_SEND RECV_3 LEV(lev,..): Communications using &

Hierarchical Comm. Tables.

enddo



Extended HID [KN 2010] for Deeper Fill-in

 Thicker Separator Distributed Local Data

— can consider the effects of
fill-ins of higher order for
external nodes at same
level.

« Effect of “A” can be considered
for “B” in BILU(2)

— In global manner

— seems to provide more
robust convergence than

Remedy 1. >< ><

— difficulty for load-
balancing >< ><A
» This option is not used in leve-1®. XX

this study (no effects) evers

Range for “Global” Operations”




ITERATIONS

Results: 64 cores

Contact Problems

BILU(p)-(depth of overlapping)
3,090,903 DOF
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M BILU(p)-(0): Block Jacobi
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Hetero 3D (1/2)
» Parallel FEM Code (Flat MPl)

— 3D linear elasticity problems in
cube geometries with heterogeneity

— SPD matrices

— Young’s modulus: 10-°~10*°
* (Ein-Emax): cONtrols condition number

Lo sanearee . @ PTECONAItIONed lterative Solvers

z-direction @ z=Z,,,

— GP-BiCG [Zhang 1997]

‘ z
Uy=0 @ y=Ymin I
[}

(N,-1) elements
N, nodes

(N,-1) elements
N, nodes

e, — BILUT(p,d,t)

 Domain Decomposition
- — Localized Block-Jacobi with

y

Uz=0 @ Z=Zmin

V/:N -1) elements EXtended Overlapplng (LBJ)

rnoses — HID/Extended HID
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Hetero 3D (2/2)
* based on the parallel FEM procedure of GeoFEM

— Benchmark developed in FP3C project under Japan-France
collaboration

» Original Motivation: Reference implementation for evaluation of LRA
by MUMPS

» Parallel Mesh Generation FPC

— Fully parallel way
« each process generates local mesh, and assembles local matrices.

— Total number of vertices in each direction (N,, N, N,)

— Number of partitions in each direction (P,,P,,P,)

— Number of total MPI processes is equal to P,xP xP,

— Each MPI process has (N,/P,)x( N,/P,)x( N,/P,) vertices.

— Spatial distribution of Young’'s modulus is given by an
external file, which includes information for heterogeneity
for the field of 1283 cube geometry.

* If N, (or N, or N,) is larger than 128, distribution of these 128° cubes
Is repeated periodically in each direction.
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BILUT(p,d,t)

* Incomplete LU factorization with threshold (ILUT)
« ILUT(p,d,t) [KN 2010]

— p:  Maximum fill-level specified before factorization
— d, t: Criteria for dropping tolerance before/after factorization

* The process (b) can be substituted by other
factorization methods or more powerful direct linear
solvers, such as MUMPS, SuperLU and etc.

(c) ,
(ILU) [t (|LUT)

Dropping
Components

ILU(p)
Factorization

Dropping
Components

Initial  -ja<d Dropped ILU MyI< t ILUT(p,d.t)
Matrix Location Matrix Factorization -Location




Preliminary Results

 Hardware
— 16-240 nodes (256-3,840 cores) of Fujitsu PRIMEHPC FX10
(Oakleaf-FX), University of Tokyo
* Problem Setting
— 420 % 320 x 240 vertices (3.194 x 107 elem’s, 9.677 X 10’ DOF)
— Strong scaling

— Effect of thickness of overlapped zones
 BILUT(p,d,t)-LBJ-X (X=1,2,3)

— RCM-Entire renumbering for LBJ
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Effect of t on Performance

Emax

max

BILUT(2,0,t)-GPBi-CG with 240 nodes (3,840 cores)

=10°, E,,,=10%°

Normalized by results of BILUT(2,0,0)-LBJ-2
@®: [NNZ], A: lterations, @: Solver Time
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BILUT(p,0,0) at 3,840 cores
NO dropping: Effect of Fill-in

" Set-up Solver Total
Preconditioner
(sec.) (sec.) (sec.)

1.920x1010 1.35 65.2 66.5 1916
| BILUT(1,0,0)LB)-2  [EPREISRETE 2.03 61.8 63.9 1288
BILUT(1,0,0)-LBJ-3  [RRITAELIE 2.79 74.0 76.8 1367
3.351x1010 3.09 71.8 74.9 1339
| BILUT(2,0,0)-LB)2  |ERECEVSEIE 4.39 65.2 69.6 939
BILUT(2,0,0)-LBJ-3  [EKXIPRIL 5.95 83.6 89.6 1006
BILUT(3,0,0)-LBJ-1  [ECRTLEIL 9.34 105.2 114.6 1192
| BILUT(2,0,0)-LB)2 KRR 12.7 98.4 111.1 823
1.101x10"" 17.3 101.6 118.9 722
1.636x1010 2.24 60.7 62.9 1472
2.980x101 5.04 66.2 71.7 1096

[NNZ] of [A]: 7.174x10°, HID: Smaller number of NNZ
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BILUT(p,0,0) at 3,840 cores
NO dropping: Effect of Overlapping

" Set-up Solver Total
Preconditioner
(sec.) (sec.) (sec.)

BILUT(1,0,0)-LBJ-1  [EERPINETLE 1.35 65.2 66.5 1916
2.519x1010 2.03 61.8 63.9 1288
BILUT(1,0,0)-LBJ-3  [RRITAELIE 2.79 74.0 76.8 1367
3.351x1010 3.09 71.8 74.9 1339
4.394x1010 4.39 65.2 69.6 939
5.631x1010 5.95 83.6 89.6 1006
| BILUT(3,0,0)-LBJ-1  [RAGEET0E 9.34 105.2 114.6 1192
| BILUT(2,0,0)-LB)2 KRR 12.7 98.4 111.1 823
| BILUT(3,0,0-LBJ3  [EERGEPSIE 17.3 101.6 118.9 722
1.636x1010 2.24 60.7 62.9 1472
2.980x1010 5.04 66.2 71.7 1096

[NNZ] of [A]: 7.174x10°



BILUT(p,0,t) at 3,840 cores

Optimum Value of t

Set-up

21

Preconditioner m

BILUT(1,0,2.75x10-2)-LBJ-1 BAELEEIE

BILUT(1,0,2.75x10-2)-LBJ-3 VARGV

BILUT(2,0,1.00x102)-LBJ-1 [ERREEEI0L
BILUT(2,0,1.00x102)-LBJ-2 [EREYSRIL

BILUT(2,0,1.00x10-2)-LBJ-3 EEEEICKEGIILE

BILUT(3,0,2.50x10-2)-LBJ-1 ERyFZE S5
BILUT(3,0,2.50x10-2)-LBJ-2 EERRIVLE

BILUT(3,0,2.50x10-2)-LBJ-3 %R0

BILUT(1,0,2.50x102)-HID [N 0LRIE

BILUT(2,0,1.00x10-2)-HID 1.030x10%°

[NNZ] of [A]: 7.174x10°

(sec.)

1.36
2.05
2.81
3.11
4.41
5.99
9.35
12.7
17.3
2.25
5.04

Solver Total
(sec.) (sec.)

45.0
42.0
54.2
39.1
37.1
37.1
38.4
35.5
40.9
38.5
36.1

46.3
44 1
57.0
42.2
41.5
43.1
47.7
48.3
58.2
40.7
41.1

1916
1383
1492
1422
1029

915
1526
1149
1180
RIS
1064
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Strong Scaling up to 3,840 cores

according to elapsed computation time (set-up+solver)
for BILUT(1,0,2.5x10-%)-HID with 256 cores
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Related Work

» Selection of Threshold for ILUT (Single Processor)

Threshold, and max. number of components for each row

Y. Saad, ILUT: A dual threshold incomplete LU factorization., Numerical
Linear Algebra with Applications (1994) 387-402

A. Gupta, and T. George, Adaptive Techniques for Improving the
Performance of Incomplete Factorization Preconditioning, SIAM Journal
on Scientific Computing, (2010) 84-100

« Adaptive Approach

Jan Mayer; “Alternative Weighted Dropping Strategies for ILUTP,” SIAM
Journal on Scientific Computing, vol. 27, no. 4, pp.1424-1437, (20006)

« Weighting Dropping Strategy
Yong Zhang, Ting-Zhu Huang, Yan-Fei Jing and Liang Li, “Flexible
incomplete Cholesky factorization with multi- parameters to control the

number of nonzero elements in preconditioners”, Numerical Linear
Algebra with Applications, vol. 19, Issue 3, pp.555-569, (2012)

* Flexible Factorization
« Number of non-zero components per row is controlled by heuristics
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Geocomputing, Lecture Notes in Earth Science 119, 65-118 (2009)

Nakajima, K., Parallel Multistage Preconditioners by Extended
Hierarchical Interface Decomposition for llI-Conditioned Problems,
Advances in Parallel ComputingVol.19 “From Multicores and GPU's to
Petascale”, I0S press, 99-106 (2010)

Hosoi, A., Washio, T., Okada, J., Kadooka, J., Nakajima, K., and Hisada,
T., A Multi-Scale Heart Simulation on Massively Parallel Computers,
ACM/IEEE Proceedings of SC10 (2010)
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Summary

e Hetero 3D

* Generally speaking, HID is slightly more robust
than LBJ with overlap extension

+ BILUT(p,d,t)

— effect of d is not significant

— [NNZ] of [M] depends on t (not p)

— BILU(3,0,t,) > BILU(2,0,t,) > BILU(1,0.,t,) for
convergence, although cost of a single iteration is
similar for each method

 Critical/optimum value of t

— [NNZ] of [M] = [NNZ] of [A]

— Further investigation needed.
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Future Works

Theoretical/numerical investigation of optimum t
— Eigenvalue analysis etc.

— Final Goal: Automatic selection BEFORE computation
— Procedures of existing works for a single CPU

Further investigation/development of LBJ & HID

Comparison with other preconditioners/direct solvers

— (Various types of) Low-Rank Approximation Methods
— MUMPS...

Extention of Hetero 3D
— OpenMP/MPI Hybrid version

« BILU(O) is already done, factorization is (was) the problem
— Extension to Manycore/GPU clusters
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