

Parallel Preconditioning Methods for III-Conditioned Problems

Kengo Nakajima Information Technology Center The University of Tokyo

3rd International Workshops on Advances in Computational Mechanics (IWACOM-III) OW-4: High Performance Computing for Computational Engineering and Science October 13-14, 2015, Tokyo, Japan

Preconditioning Methods (of Krylov Iterative Solvers) for Real-World Applications

- are the most critical issues in scientific computing
- are based on
 - Global Information: condition number, matrix properties etc.
 - Local Information: properties of elements (shape, size ...)
- require knowledge of
 - background physics
 - applications

Technical Issues of "Parallel" Preconditioners in FEM

- Block Jacobi type Localized Preconditioners
- Simple problems can easily converge by simple preconditioners with excellent parallel efficiency.
- Difficult (ill-conditioned) prob's cannot easily converge
 - Effect of domain decomposition on convergence is significant, especially for ill-conditioned problems.
 - Block Jacobi-type localized preconditioiners
 - More domains, more iterations
 - There are some remedies (e.g. deep fill-ins, deep overlapping)
 - ASDD does not work well for really ill-conditioned problems.

3D Linear Elastic Problem with 20³ Tri-Linear Hexahedral Elements

Iterations for Convergence BILU(0)-GPBiCG with 8 domains

- :v= 0.25
- :E=1.00

- 1-processor
 - : E=10⁰ , 31 iterations
 - E=10⁺³, 84 iterations
 - Harder, More ill-conditioned
- 8-processors (MPI, no-overlapping)

- ■: E=10⁰, 52 iter's(×1.68)

- ■: E=10⁺³, 158 iter's(×1.88)

Remedies for Domain Decomposition

- Extended Depth of Overlapped Elements
 - Selective Fill-ins, Selective Overlapping [KN 2007]
 - adaptive preconditioning/domain decomposition methods which utilize features of FEM procedures
- PHIDAL/HID (Hierarchical Interface Decomposition) [Henon & Saad 2007]
- Extended HID [KN 2010]

Extension of Depth of Overlapping

Number of Iterations for Convergence BILU(0)-GPBiCG, 8-domains (PE's) Effect of Extended Depth of Overlapping

Depth of Overlap	E=10 ⁰	E=10 ³
0	52	158
1	33	103
2	32	100
3	32	97
4	31	82
Single Domain	31	84

HID: Hierarchical Interface Decomposition [Henon & Saad 2007]

- Multilevel Domain Decomposition
 - Extension of Nested Dissection
- Non-overlapping at each level: Connectors, Separators
- Suitable for Parallel Preconditioning Method

Parallel ILU in HID for each Connector at each LEVEL

- The unknowns are reordered according to their <u>level</u> numbers, from the lowest to highest.
- The block structure of the reordered matrix leads to natural parallelism if ILU/IC decompositions or forward/backward substitution processes are applied.

Communications at Each Level Forward Substitutions

```
do lev= 1, LEVELtot
  do i= LEVindex(lev-1)+1, LEVindex(lev)
    SW1 = WW(3*i-2,R); SW2 = WW(3*i-1,R); SW3 = WW(3*i,R)
    isL= INL(i-1)+1; ieL= INL(i)
    do j= isL, ieL
      k = IAL(j)
      X1 = WW(3*k-2,R); X2 = WW(3*k-1,R); X3 = WW(3*k,R)
      SW1= SW1 - AL(9*j-8)*X1 - AL(9*j-7)*X2 - AL(9*j-6)*X3
      SW2 = SW2 - AL(9*j-5)*X1 - AL(9*j-4)*X2 - AL(9*j-3)*X3
      SW3 = SW3 - AL(9*i-2)*X1 - AL(9*i-1)*X2 - AL(9*i)*X3
    enddo
    X1 = SW1; X2 = SW2; X3 = SW3
    X2 = X2 - ALU(9*i-5)*X1
    X3= X3 - ALU(9*i-2)*X1 - ALU(9*i-1)*X2
    X3 = ALU(9*i) X3
    X2 = ALU(9*i-4)*(X2 - ALU(9*i-3)*X3)
    X1 = ALU(9*i-8)*(X1 - ALU(9*i-6)*X3 - ALU(9*i-7)*X2)
    WW(3*i-2,R) = X1; WW(3*i-1,R) = X2; WW(3*i,R) = X3
                                                            Additional
  enddo
                                                            Comm.
                                          Communications using
  call SOLVER SEND RECV 3 LEV(lev,...):
                                          Hierarchical Comm. Tables.
enddo
```

Extended HID [KN 2010] for Deeper Fill-in

<u>Thicker Separator</u>

- can consider the effects of fill-ins of higher order for external nodes at same level.
 - Effect of "A" can be considered for "B" in BILU(2)
- In global manner
- seems to provide more robust convergence than Remedy 1.
- difficulty for loadbalancing
- <u>This option is not used in</u> <u>this study (no effects)</u>

Distributed Local Data

12

Range for "Global" Operations"

Results: 64 cores Contact Problems BILU(p)-(depth of overlapping) 3,090,903 DOF

BILU(p)-(0): Block Jacobi
BILU(p)-(1)
BILU(p)-(1+)
BILU(p)-HID
GPBiCG

Hetero 3D (1/2)

- Parallel FEM Code (Flat MPI)
 - 3D linear elasticity problems in cube geometries with heterogeneity
 - SPD matrices
 - Young's modulus: 10⁻⁶~10⁺⁶
 - (E_{min}-E_{max}): controls condition number
 - Preconditioned Iterative Solvers
 - GP-BiCG [Zhang 1997]
 - BILUT(p,d,t)
- Domain Decomposition
 - Localized Block-Jacobi with Extended Overlapping (LBJ)
 - HID/Extended HID

Hetero 3D (2/2)

- based on the parallel FEM procedure of GeoFEM
 - Benchmark developed in FP3C project under Japan-France collaboration
 - Original Motivation: Reference implementation for evaluation of LRA by MUMPS
- Parallel Mesh Generation
 - Fully parallel way

- Total number of vertices in each direction (N_x, N_y, N_z)
- Number of partitions in each direction (P_x, P_y, P_z)
- Number of total MPI processes is equal to $\dot{P}_x \times P_v \times P_z$
- Each MPI process has $(N_x/P_x) \times (N_y/P_y) \times (N_z/P_z)$ vertices.
- Spatial distribution of Young's modulus is given by an external file, which includes information for heterogeneity for the field of 128³ cube geometry.
 - If N_x (or N_y or N_z) is larger than 128, distribution of these 128³ cubes is repeated periodically in each direction.

BILUT(*p,d,t*)

- Incomplete LU factorization with threshold (ILUT)
- ILUT(*p*,*d*,*t*) [KN 2010]
 - *p*: Maximum fill-level specified before factorization
 - *d, t*: Criteria for dropping tolerance before/after factorization
- The process (b) can be substituted by other factorization methods or more powerful direct linear solvers, such as *MUMPS*, *SuperLU* and etc.

Preliminary Results

Hardware

- 16-240 nodes (256-3,840 cores) of Fujitsu PRIMEHPC FX10 (Oakleaf-FX), University of Tokyo
- Problem Setting
 - 420 × 320 × 240 vertices (3.194 × 10⁷ elem's, 9.677 × 10⁷ DOF)
 - Strong scaling
 - Effect of thickness of overlapped zones
 - BILUT(*p*,*d*,*t*)-LBJ-X (X=1,2,3)
 - RCM-Entire renumbering for LBJ

Effect of t on Performance

BILUT(2,0,t)-GPBi-CG with 240 nodes (3,840 cores) E_{max} =10⁻⁶, E_{max} =10⁺⁶ Normalized by results of BILUT(2,0,0)-LBJ-2

•: [NNZ], A: Iterations, +: Solver Time

t: BILUT(2,0,t)-HID

t: BILUT(2,0,t)-LJB-2

BILUT(*p*,0,0) at 3,840 cores NO dropping: Effect of Fill-in

Preconditioner	NNZ of [M]	Set-up (sec.)	Solver (sec.)	Total (sec.)	Iterations
BILUT(1,0,0)-LBJ-1	1.920×10 ¹⁰	1.35	65.2	66.5	1916
BILUT(1,0,0)-LBJ-2	2.519×10 ¹⁰	2.03	61.8	63.9	1288
BILUT(1,0,0)-LBJ-3	3.197×10 ¹⁰	2.79	74.0	76.8	1367
BILUT(2,0,0)-LBJ-1	3.351×10 ¹⁰	3.09	71.8	74.9	1339
BILUT(2,0,0)-LBJ-2	4.394×10 ¹⁰	4.39	65.2	69.6	939
BILUT(2,0,0)-LBJ-3	5.631×10 ¹⁰	5.95	83.6	89.6	1006
BILUT(3,0,0)-LBJ-1	6.468×10 ¹⁰	9.34	105.2	114.6	1192
BILUT(3,0,0)-LBJ-2	8.523×10 ¹⁰	12.7	98.4	111.1	823
BILUT(3,0,0)-LBJ-3	1.101×10 ¹¹	17.3	101.6	118.9	722
BILUT(1,0,0)-HID	1.636×10 ¹⁰	2.24	60.7	62.9	1472
BILUT(2,0,0)-HID	2.980×10 ¹⁰	5.04	66.2	71.7	1096

[NNZ] of [A]: 7.174×10⁹, HID: Smaller number of NNZ

BILUT(*p*,0,0) at 3,840 cores NO dropping: Effect of Overlapping

Preconditioner	NNZ of [M]	Set-up (sec.)	Solver (sec.)	Total (sec.)	Iterations
BILUT(1,0,0)-LBJ-1	1.920×10 ¹⁰	1.35	65.2	66.5	1916
BILUT(1,0,0)-LBJ-2	2.519×10 ¹⁰	2.03	61.8	63.9	1288
BILUT(1,0,0)-LBJ-3	3.197×10 ¹⁰	2.79	74.0	76.8	1367
BILUT(2,0,0)-LBJ-1	3.351×10 ¹⁰	3.09	71.8	74.9	1339
BILUT(2,0,0)-LBJ-2	4.394×10 ¹⁰	4.39	65.2	69.6	939
BILUT(2,0,0)-LBJ-3	5.631×10 ¹⁰	5.95	83.6	89.6	1006
BILUT(3,0,0)-LBJ-1	6.468×10 ¹⁰	9.34	105.2	114.6	1192
BILUT(3,0,0)-LBJ-2	8.523×10 ¹⁰	12.7	98.4	111.1	823
BILUT(3,0,0)-LBJ-3	1.101×10 ¹¹	17.3	101.6	118.9	722
BILUT(1,0,0)-HID	1.636×10 ¹⁰	2.24	60.7	62.9	1472
BILUT(2,0,0)-HID	2.980×10 ¹⁰	5.04	66.2	71.7	1096

[NNZ] of [A]: 7.174×10⁹

BILUT(*p*,0,*t*) at 3,840 cores Optimum Value of *t*

Preconditioner	NNZ of [M]	Set-up (sec.)	Solver (sec.)	Total (sec.)	Iterations
BILUT(1,0,2.75×10 ⁻²)-LBJ-1	7.755×10 ⁹	1.36	45.0	46.3	1916
BILUT(1,0,2.75×10 ⁻²)-LBJ-2	1.019×10 ¹⁰	2.05	42.0	44.1	1383
BILUT(1,0,2.75×10 ⁻²)-LBJ-3	1.285×10 ¹⁰	2.81	54.2	57.0	1492
BILUT(2,0,1.00×10 ⁻²)-LBJ-1	1.118×10 ¹⁰	3.11	39.1	42.2	1422
BILUT(2,0,1.00×10 ⁻²)-LBJ-2	1.487×10 ¹⁰	4.41	37.1	41.5	1029
BILUT(2,0,1.00×10 ⁻²)-LBJ-3	1.893×10 ¹⁰	5.99	37.1	43.1	<u>915</u>
BILUT(3,0,2.50×10 ⁻²)-LBJ-1	8.072×10 ⁹	9.35	38.4	47.7	1526
BILUT(3,0,2.50×10 ⁻²)-LBJ-2	1.063×10 ¹⁰	12.7	35.5	48.3	1149
BILUT(3,0,2.50×10 ⁻²)-LBJ-3	1.342×10 ¹⁰	17.3	40.9	58.2	1180
BILUT(1,0,2.50×10 ⁻²)-HID	6.850×10 ⁹	2.25	38.5	40.7	<u>1313</u>
BILUT(2,0,1.00×10 ⁻²)-HID	1.030×10 ¹⁰	5.04	36.1	41.1	<u>1064</u>

[NNZ] of [A]: 7.174×10⁹

Strong Scaling up to 3,840 cores

according to elapsed computation time (set-up+solver) for BILUT(1,0,2.5×10⁻²)-HID with 256 cores

Related Work

- Selection of Threshold for ILUT (Single Processor)
 - Threshold, and max. number of components for each row
 - Y. Saad, ILUT: A dual threshold incomplete LU factorization., Numerical Linear Algebra with Applications (1994) 387-402
 - A. Gupta, and T. George, Adaptive Techniques for Improving the Performance of Incomplete Factorization Preconditioning, SIAM Journal on Scientific Computing, (2010) 84-100
 - Adaptive Approach
 - Jan Mayer; "Alternative Weighted Dropping Strategies for ILUTP," SIAM Journal on Scientific Computing, vol. 27, no. 4, pp.1424-1437, (2006)
 - Weighting Dropping Strategy
 - Yong Zhang, Ting-Zhu Huang, Yan-Fei Jing and Liang Li, "Flexible incomplete Cholesky factorization with multi- parameters to control the number of nonzero elements in preconditioners", Numerical Linear Algebra with Applications, vol. 19, Issue 3, pp.555-569, (2012)
 - Flexible Factorization
 - Number of non-zero components per row is controlled by heuristics

Related Work (cont.)

Parallel Cases

- Nakajima, K. and H.Okuda, Parallel Iterative Solvers for Simulations of Fault Zone Contact using Selective Blocking Reordering, Numerical Linear Algebra with Applications 11, 831-852 (2004)
- Nakajima, K., Parallel Preconditioning Methods with Selective Fill-Ins and Selective Overlapping for Ill-Conditioned Problems in Finite-Element Methods, Lecture Notes in Computer Science 4489, 1085-1092. International Conference on Computational Science (ICCS 2007) (2007)
- Nakajima, K., Strategies for Preconditioning Methods of Parallel Iterative Solvers in Finite-Element Applications on Geophysics, Advances in Geocomputing, Lecture Notes in Earth Science 119, 65-118 (2009)
- Nakajima, K., Parallel Multistage Preconditioners by Extended Hierarchical Interface Decomposition for III-Conditioned Problems, Advances in Parallel ComputingVol.19 "From Multicores and GPU's to Petascale", IOS press, 99-106 (2010)
- Hosoi, A., Washio, T., Okada, J., Kadooka, J., Nakajima, K., and Hisada, T., A Multi-Scale Heart Simulation on Massively Parallel Computers, ACM/IEEE Proceedings of SC10 (2010)

Summary

- Hetero 3D
- Generally speaking, HID is slightly more robust than LBJ with overlap extension
- BILUT(*p*,*d*,*t*)
 - effect of d is not significant
 - [NNZ] of [M] depends on t (not p)
 - $BILU(3,0,t_0) > BILU(2,0,t_0) > BILU(1,0,t_0)$ for convergence, although cost of a single iteration is similar for each method
- Critical/optimum value of t
 - [NNZ] of [M] = [NNZ] of [A]
 - Further investigation needed.

Future Works

- Theoretical/numerical investigation of optimum t
 - Eigenvalue analysis etc.
 - Final Goal: Automatic selection BEFORE computation
 - Procedures of existing works for a single CPU
- Further investigation/development of LBJ & HID
- Comparison with other preconditioners/direct solvers
 - (Various types of) Low-Rank Approximation Methods
 - MUMPS…
- Extention of Hetero 3D
 - OpenMP/MPI Hybrid version
 - BILU(0) is already done, factorization is (was) the problem
 - Extension to Manycore/GPU clusters