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Descriptions of Class

• Technical & Scientific Computing I (4820-1027)
– 科学技術計算Ⅰ

– Department of Mathematical Informatics
• Seminar on Computer Science I (4810-1204)

– コンピュータ科学特別講義Ⅰ

– Department of Computer Science
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Changes in 2015 
• 2009-2014

– Introduction to FEM Programming 
• FEM: Finite-Element Method：有限要素法

– Summer (I) : FEM Programming for Solid Mechanics
– Winter    (II): Parallel FEM using MPI

• The 1st part (summer) is essential for the 2nd part (winter)

• Problems
– Many new (international) students in Winter, who did not take the 

1st part in Summer
– They are generally more diligent than Japanese students

• 2015 (Information in the printed handbook is wrong)
– Summer (I) : Multicore programming using OpenMP
– Winter    (II): FEM + Parallel FEM using MPI for Heat Conduction
– Part I & II are independent (maybe...) 
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Motivation for Parallel Computing
(and this class)

• Large-scale parallel computer enables fast computing in 
large-scale scientific simulations with detailed models. 
Computational science develops new frontiers of science 
and engineering.

• Why parallel computing ?
– faster & larger
– “larger” is more important from the view point of “new frontiers of 

science & engineering”, but “faster” is also important.
– + more complicated
– Ideal: Scalable

• Solving Nx scale problem using Nx computational resources during same 
computation time (weak scaling)

Intro



Scientific Computing = SMASH
• You have to learn many things.
• Collaboration (or Co-Design) will be 

important for future career of each of 
you, as a scientist and/or an 
engineer.
– You have to communicate with people 

with different backgrounds.
– It is more difficult than communicating 

with foreign scientists from same area.
• (Q): Computer Science, 

Computational Science, or 
Numerical Algorithms ?
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This Class ...
• Target: Parallel FVM (Finite-

Volume Method) using OpenMP
• Science: 3D Poisson Equations
• Modeling: FVM
• Algorithm: Iterative Solvers etc.

• You have to know many components 
to learn FVM, although you have 
already learned each of these in 
undergraduate and high-school 
classes.
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Road to Programming for “Parallel” 
Scientific Computing
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Unix, Fortan, C etc.

Programming for Fundamental
Numerical Analysis

(e.g. Gauss-Seidel, RK etc.)

Programming for Real World 
Scientific Computing

(e.g. FEM, FDM)

Programming for Parallel 
Scientific Computing

(e.g. Parallel FEM/FDM)

Big gap here !!
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The third step is important !
• How to parallelize applications ?

– How to extract parallelism ?
– If you understand methods, algorithms, 

and implementations of the original 
code, it’s easy.

– “Data-structure” is important

• How to understand the code ?
– Reading the application code !!
– It seems primitive, but very effective.
– In this class, “reading the source code” is encouraged.
– 3: FVM, 4: Parallel FVM
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1. Unix, Fortan, C etc.

2. Programming for Fundamental
Numerical Analysis

(e.g. Gauss-Seidel, RK etc.)

3. Programming for Real World 
Scientific Computing

(e.g. FEM, FDM)

4. Programming for Parallel 
Scientific Computing

(e.g. Parallel FEM/FDM)



Kengo Nakajima 中島研吾 (1/2)
• Current Position

– Professor, Supercomputing Research Division, Information 
Technology Center, The University of Tokyo（情報基盤センター）

• Department of Mathematical Informatics, Graduate School of Information 
Science & Engineering, The University of Tokyo（情報理工・数理情報学）

• Department of Electrical Engineering and Information Systems, Graduate 
School of Engineering, The University of Tokyo（工・電気系工学）

– Visiting Senior Researcher, Advanced Institute for 
Computational Science (AICS), RIKEN

• Research Interest
– High-Performance Computing
– Parallel Numerical Linear Algebra (Preconditioning)
– Parallel Programming Model
– Computational Mechanics, Computational Fluid Dynamics
– Adaptive Mesh Refinement, Parallel Visualization
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Kengo Nakajima (2/2)
• Education

– B.Eng (Aeronautics, The University of Tokyo, 1985)
– M.S. (Aerospace Engineering, University of Texas, 1993)
– Ph.D. (Quantum Engineering & System Sciences, The University 

of Tokyo, 2003)
• Professional

– Mitsubishi Research Institute, Inc. (1985-1999)
– Research Organization for Information Science & Technology 

(1999-2004)
– The University of Tokyo

• Department Earth & Planetary Science (2004-2008)
• Information Technology Center (2008-)

– JAMSTEC (2008-2011), part-time
– RIKEN (2009-), part-time
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• Supercomputers and Computational Science
• Overview of the Class
• Future Issues
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Computer & CPU

• Central Processing Unit （中央処理装置）：CPU
• CPU’s used in PC and Supercomputers are based on 

same architecture
• GHz: Clock Rate

– Frequency: Number of operations by CPU per second
• GHz -> 109 operations/sec

– Simultaneous 4-8 instructions per clock
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Multicore CPU
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CPU
コア（Core）

CPU
Core

Core

CPU
Core

Core

Core

Core

Single Core
1 cores/CPU

Dual Core
2 cores/CPU

Quad Core
4 cores/CPU

• GPU: Manycore
– O(101)-O(102) cores

• More and more cores
– Parallel computing

• Oakleaf-FX at University of 
Tokyo: 16 cores
– SPARC64TM IXfx

• Core= Central 
part of CPU

• Multicore CPU’s 
with 4-8 cores 
are popular
– Low Power

Intro



GPU/Manycores
• GPU：Graphic Processing Unit

– GPGPU: General Purpose GPU
– O(102) cores
– High Memory Bandwidth
– Cheap
– NO stand-alone operations

• Host CPU needed
– Programming: CUDA, OpenACC

• Intel Xeon/Phi: Manycore CPU
– 60 cores
– High Memory Bandwidth
– Unix, Fortran, C compiler 
– Currently, host CPU needed

• Stand-alone will be possible soon

14Intro



Parallel Supercomputers
Multicore CPU’s are connected through network 
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Supercomputers with 
Heterogeneous/Hybrid Nodes

16

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

Intro



17

Performance of Supercomputers
• Performance of CPU: Clock Rate
• FLOPS (Floating Point Operations per Second)

– Real Number
• Recent Multicore CPU

– 4-8 FLOPS per Clock
– (e.g.) Peak performance of a core with 3GHz 

• 3×109×4(or 8)=12(or 24)×109 FLOPS=12(or 24)GFLOPS

• 106 FLOPS= 1 Mega FLOPS = 1 MFLOPS
• 109 FLOPS= 1 Giga FLOPS = 1 GFLOPS
• 1012 FLOPS= 1 Tera FLOPS = 1 TFLOPS
• 1015 FLOPS= 1 Peta FLOPS = 1 PFLOPS
• 1018 FLOPS= 1 Exa FLOPS = 1 EFLOPS

Intro
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Peak Performance of Oakleaf-FX
Fujitsu PRIMEHPC FX10 at U.Tokyo

• 1.848 GHz
• 8 FLOP operations per Clock
• Peak Performance (1 core)

– 1.848×8= 14.78 GFLOPS
• Peak Performance (1 node/16 

cores)
– 236.5 GFLOPS 

• Peak Performance of Entire 
Performance
– 4,800 nodes，76,800 cores
– 1.13 PFLOPS

Intro
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TOP 500 List
http://www.top500.org/

• Ranking list of supercomputers in the world
• Performance (FLOPS rate) is measured by 

“Linpack” which solves large-scale linear 
equations.
– Since 1993
– Updated twice a year (International Conferences in 

June and November)
• Linpack

– iPhone version is available

Intro
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• PFLOPS: Peta (=1015) Floating OPerations per Sec.
• Exa-FLOPS (=1018) will be attained in 2020

Intro

http://www.top500.org/

GFLOPS

10 PF

1 PF
100 TF
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Site Computer/Year Vendor Cores Rmax Rpeak Power

1 National Supercomputing 
Center in Tianjin, China

Tianhe-2 Intel Xeon E5-2692, TH 
Express-2, IXeon Phi2013 NUDT 3120000 33863

(= 33.9 PF) 54902 17808

2 Oak Ridge National 
Laboratory, USA

Titan
Cray XK7/NVIDIA K20x, 2012 Cray 560640 17590 27113 8209

3 Lawrence Livermore 
National Laboratory, USA

Sequoia
BlueGene/Q, 2011 IBM 1572864 17173 20133 7890

4 RIKEN AICS, Japan K computer, SPARC64 VIIIfx , 2011 
Fujitsu 705024 10510 11280 12660

5 Argonne National 
Laboratory, USA

Mira
BlueGene/Q, 2012 IBM 786432 8587 10066 3945

6 Swiss Natl. Supercomputer 
Center, Switzerland

Piz Daint
Cray XC30/NVIDIA K20x, 2013, Cray 115984 6271 7789 2325

7 TACC, USA Stampede
Xeon E5-2680/Xeon Phi, 2012 Dell 462462 5168 8520 4510

8 Forschungszentrum Juelich
(FZJ), Germany

JuQUEEN
BlueGene/Q, 2012 IBM 458752 5009 5872 2301

9 DOE/NNSA/LLNL, USA Vulcan
BlueGene/Q, 2012 IBM 393216 4293 5033 1972

10 Government, USA Cray CS-Storm/Xeon E5-
2670/2680/NVIDIA K40, 2014 Cray 72800 3577 6132 1499

44th TOP500 List (November, 2014)

Rmax: Performance of Linpack (TFLOPS)
Rpeak: Peak Performance (TFLOPS), Power: kW

Intro
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Site Computer/Year Vendor Cores Rmax Rpeak Power

1 National Supercomputing 
Center in Tianjin, China

Tianhe-2 Intel Xeon E5-2692, TH 
Express-2, IXeon Phi2013 NUDT 3120000 33863

(= 33.9 PF) 54902 17808

2 Oak Ridge National 
Laboratory, USA

Titan
Cray XK7/NVIDIA K20x, 2012 Cray 560640 17590 27113 8209

3 Lawrence Livermore 
National Laboratory, USA

Sequoia
BlueGene/Q, 2011 IBM 1572864 17173 20133 7890

4 RIKEN AICS, Japan K computer, SPARC64 VIIIfx , 2011 
Fujitsu 705024 10510 11280 12660

5 Argonne National 
Laboratory, USA

Mira
BlueGene/Q, 2012 IBM 786432 8587 10066 3945

6 Swiss Natl. Supercomputer 
Center, Switzerland

Piz Daint
Cray XC30/NVIDIA K20x, 2013, Cray 115984 6271 7789 2325

7 TACC, USA Stampede
Xeon E5-2680/Xeon Phi, 2012 Dell 462462 5168 8520 4510

8 Forschungszentrum Juelich
(FZJ), Germany

JuQUEEN
BlueGene/Q, 2012 IBM 458752 5009 5872 2301

9 DOE/NNSA/LLNL, USA Vulcan
BlueGene/Q, 2012 IBM 393216 4293 5033 1972

10 Government, USA Cray CS-Storm/Xeon E5-
2670/2680/NVIDIA K40, 2014 Cray 72800 3577 6132 1499

48 ITC/U. Tokyo
Japan

Oakleaf-FX
SPARC64 IXfx, 2012 Fujitsu 76800 1043 1135 1177

44th TOP500 List (November, 2014)

Rmax: Performance of Linpack (TFLOPS)
Rpeak: Peak Performance (TFLOPS), Power: kW

Intro



Computational Science
The 3rd Pillar of Science

• Theoretical & Experimental Science
• Computational Science

– The 3rd Pillar of Science
– Simulations using Supercomputers
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Methods for Scientific Computing
• Numerical solutions of PDE (Partial Diff. Equations)
• Grids, Meshes, Particles

– Large-Scale Linear Equations
– Finer meshes provide more accurate solutions 
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3D Simulations for Earthquake 
Generation Cycle

San Andreas Faults, CA, USA
Stress Accumulation at Transcurrent Plate Boundaries
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Adaptive FEM: High-resolution needed at meshes with 
large deformation (large accumulation)
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h=100km h=50km h=5km

[JAMSTEC]

Typhoon Simulations by FDM
Effect of Resolution
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Simulation of Typhoon MANGKHUT
in 2003 using the Earth Simulator

[JAMSTEC]
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Simulation of Geologic CO2 Storage

[Dr. Hajime Yamamoto, Taisei]
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Simulation of Geologic CO2 Storage
• International/Interdisciplinary 

Collaborations
– Taisei (Science, Modeling)
– Lawrence Berkeley National Laboratory, 

USA (Modeling)
– Information Technology Center, the 

University of Tokyo (Algorithm, Software)
– JAMSTC (Earth Simulator Center) 

(Software, Hardware)
– NEC (Software, Hardware)

• 2010 Japan Geotechnical Society 
(JGS) Award

30Intro



Simulation of Geologic CO2 Storage
• Science

– Behavior of CO2 in supercritical state at deep reservoir
• PDE’s

– 3D Multiphase Flow (Liquid/Gas) + 3D Mass Transfer
• Method for Computation

– TOUGH2 code based on FVM, and developed by Lawrence 
Berkeley National Laboratory, USA

• More than 90% of computation time is spent for solving large-scale linear 
equations with more than 107 unknowns

• Numerical Algorithm
– Fast algorithm for large-scale linear equations developed by 

Information Technology Center, the University of Tokyo
• Supercomputer

– Earth Simulator (Peak Performance: 130 TFLOPS)
• NEC, JAMSEC
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Concentration of CO2 in Groundwater 
Meshes with higher resolution provide more accurate 

prediction ⇒ Larger Model/Linear Equations

[Dr. Hajime Yamamoto, Taisei]
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Motivation for Parallel Computing, 
again

• Large-scale parallel computer enables fast computing in 
large-scale scientific simulations with detailed models. 
Computational science develops new frontiers of science 
and engineering.

• Why parallel computing ?
– faster
– larger
– “larger” is more important from the view point of “new frontiers of 

science & engineering”, but “faster” is also important.
– + more complicated
– Ideal: Scalable

• Solving Nx scale problem using Nx computational resources during same 
computation time.

Intro



• Supercomputers and Computational Science
• Overview of the Class
• Future Issues
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Our Current Target: Multicore Cluster
Multicore CPU’s are connected through network 
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• OpenMP
 Multithreading
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• MPI
 Message Passing
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Our Current Target: Multicore Cluster
Multicore CPU’s are connected through network 
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Our Current Target: Multicore Cluster
Multicore CPU’s are connected through network 
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Flat MPI vs. Hybrid

Hybrid：Hierarchal Structure

Flat-MPI：Each Core -> Independent
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• MPI only
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Node

• OpenMP
• MPI



Example of OpnMP/MPI Hybrid
Sending Messages to Neighboring Processes

MPI: Message Passing, OpenMP: Threading with Directives

Intro 39

!C
!C– SEND

do neib= 1, NEIBPETOT
II= (LEVEL-1)*NEIBPETOT
istart= STACK_EXPORT(II+neib-1)
inum  = STACK_EXPORT(II+neib  ) - istart

!$omp parallel do
do k= istart+1, istart+inum

WS(k-NE0)= X(NOD_EXPORT(k))
enddo

call MPI_Isend (WS(istart+1-NE0), inum, MPI_DOUBLE_PRECISION,   &
&                  NEIBPE(neib), 0, MPI_COMM_WORLD,                &
&                  req1(neib), ierr)
enddo
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• In order to make full use of modern supercomputer systems with 
multicore/manycore architectures, hybrid parallel programming 
with message-passing and multithreading is essential. 

• MPI for message–passing and OpenMP for multithreading are the 
most popular ways for parallel programming on multicore/manycore 
clusters. 

• In this class, we “parallelize” a finite-volume method code with 
Krylov iterative solvers for Poisson’s equation on Fujitsu PRIMEHPC 
FX10 supercomputer at the University of Tokyo (Oakleaf-FX) .

• Because of limitation of time, we are (mainly) focusing on 
multithreading by OpenMP. 

• ICCG solver (Conjugate Gradient iterative solvers with Incomplete 
Cholesky preconditioning) is a widely-used method for solving linear 
equations.

• Because it includes “data dependency” where writing/reading data 
to/from memory could occur simultaneously, parallelization using 
OpenMP is not straight forward. 
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• We need certain kind of reordering in order to extract parallelism. 

• Lectures and exercise on the following issues related to OpenMP
will be conducted:
 Finite-Volume Method (FVM)
 Kyrilov Iterative Method
 Preconditioning
 Implementation of the Program
 Introduction to OpenMP
 Reordering/Coloring Method
 Parallel FVM Code using OpenMP

• (If we have time) Lectures and exercise on the following issues 
related to MPI (and OpenMP) will be conducted: 
 Parallel FVM on Distributed Memory Systems
 Very Brief Introduction of MPI
 Data Structure for Parallel FVM
 Parallel FVM Code using OpenMP/MPI Hybrid Parallel Programming 

Model
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Date ID Title 
Apr-06 (M) CS-01 Introduction
Apr-13 (M) CS-02 FVM (1/2)
Apr-20 (M) CS-03 FVM (2/2)
Apr-27 (M) CS-04 Login to FX10, OpenMP (1/2)
May-11 (M) CS-05 OpenMP (2/2)
May-18 (M) CS-06 Reordering (1/2)
May-25 (M) CS-07 Reordering (2/2)
May-28 (Th) CS-08 Parallel Code by OpenMP (1/2)
Jun-01 (M) (canceled)
Jun-08 (M) CS-09 Parallel Code by OpenMP (2/2)
Jun-15 (M) CS-10 OpenMP/MPI Hybrid (1/3)
Jun-22 (M) (canceled)
Jun-26 (F) CS-11 OpenMP/MPI Hybrid (2/3)
Jun-29   (M) (canceled)
Jul-06   (M) CS-12 OpenMP/MPI Hybrid (3/3)



“Prerequisites”

• Fundamental physics and mathematics
– Linear algebra, analytics

• Experiences in fundamental numerical algorithms
– LU factorization/decomposition, Gauss-Seidel

• Experiences in programming by C or Fortran
• Experiences and knowledge in UNIX
• User account of ECCS2012 must be obtained:

– http://www.ecc.u-tokyo.ac.jp/doc/announce/newuser.html
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Strategy
• If you can develop programs by yourself, it is ideal... but 

difficult.
– focused on “reading”, not developing by yourself
– Programs are in C and Fortran

• Lectures are done by ...

• Lecture Materials
– available at NOON Friday through WEB.

• http://nkl.cc.u-tokyo.ac.jp/15s/
– NO hardcopy is provided (Today is exceptional)

• Starting at 08:30
– You can enter the building after 08:00

• Taking seats from the front row.
• Terminals must be shut-down after class.
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Intro-01

Grades
• 1 or 2 Reports on programming
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If you have any questions, please feel 
free to contact me !

46

• Office: 3F Annex/Information Technology Center #36
– 情報基盤センター別館3F 36号室

• ext.: 22719
• e-mail: nakajima(at)cc.u-tokyo.ac.jp
• NO specific office hours, appointment by e-mail

• http://nkl.cc.u-tokyo.ac.jp/15s/
• http://nkl.cc.u-tokyo.ac.jp/seminars/2015-Spring/ 日本語資
料（一部）
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Keywords for OpenMP
• OpenMP

– Directive based, (seems to be) easy
– Many books

• Data Dependency
– Conflict of reading from/writing to memory
– Appropriate reordering of data is needed for “consistent” 

parallel computing
– NO detailed information in OpenMP books: very complicated
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Some Technical Terms
• Processor, Core

– Processing Unit (H/W), Processor=Core for single-core proc’s
• Process

– Unit for MPI computation, nearly equal to “core”
– Each core (or processor) can host multiple processes (but not 

efficient)
• PE (Processing Element)

– PE originally mean “processor”, but it is sometimes  used as 
“process” in this class. Moreover it means “domain” (next)

• In multicore proc’s: PE generally means “core”

• Domain
– domain=process (=PE), each of “MD” in “SPMD”, each data set

• Process ID of MPI (ID of PE, ID of domain) starts from “0”
– if you have 8 processes (PE’s, domains), ID is 0~7



• Supercomputers and Computational Science
• Overview of the Class
• Future Issues
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Key-Issues towards Appl./Algorithms 
on Exa-Scale Systems

Jack Dongarra (ORNL/U. Tennessee) at ISC 2013

• Hybrid/Heterogeneous Architecture
– Multicore + GPU/Manycores (Intel MIC/Xeon Phi)

• Data Movement, Hierarchy of Memory

• Communication/Synchronization Reducing Algorithms
• Mixed Precision Computation
• Auto-Tuning/Self-Adapting
• Fault Resilient Algorithms
• Reproducibility of Results 
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Supercomputers with 
Heterogeneous/Hybrid Nodes
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Hybrid Parallel Programming Model is 
essential for Post-Peta/Exascale 

Computing
• Message Passing (e.g. MPI) + Multi Threading (e.g. 

OpenMP, CUDA, OpenCL, OpenACC etc.)
• In K computer and FX10, hybrid parallel programming is 

recommended
– MPI + Automatic Parallelization by Fujitsu’s Compiler

• Expectations for Hybrid
– Number of MPI processes (and sub-domains) to be reduced
– O(108-109)-way MPI might not scale in Exascale Systems
– Easily extended to Heterogeneous Architectures

• CPU+GPU, CPU+Manycores  (e.g. Intel MIC/Xeon Phi)
• MPI+X: OpenMP, OpenACC, CUDA, OpenCL
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This class is also useful for 
this type of parallel system
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Parallel Programming Models
• Multicore Clusters (e.g. K, FX10)

– MPI + OpenMP and (Fortan/C/C++)
• Multicore + GPU (e.g. Tsubame)

– GPU needs host CPU
– MPI and [(Fortan/C/C++) + CUDA, OpenCL]

• complicated, 

– MPI and [(Fortran/C/C++) with OpenACC]
• close to MPI + OpenMP and (Fortran/C/C++) 

• Multicore + Intel MIC/Xeon-Phi (e.g. Stampede)
– Xeon-Phi needs host CPU (currently)
– MPI + OpenMP and (Fortan/C/C++) is possible

• + Vectorization

Intro 54
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Future of Supercomputers (1/2)
• Technical Issues

– Power Consumption
– Reliability, Fault Tolerance, Fault Resilience
– Scalability (Parallel Performancce)

• Petascale System
– 2MW including A/C, 2M$/year, O(105～106) cores

• Exascale System (103x Petascale)
– 2020-2023 (?)

• 2GW (2 B$/year !), O(108～109) cores

– Various types of innovations are on-going
• to keep power consumption at 20MW (100x efficiency)
• CPU, Memory, Network ...

– Reliability
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Future of Supercomputers (2/2)

• Not only hardware, but also numerical models and 
algorithms must be improved:
– 省電力（Power-Aware/Reducing Algorithms）
– 耐故障（Fault Resilient Algorithms）
– 通信削減（Communication Avoiding/Reducing Algorithms）

• Co-Design by experts from various area (SMASH) is 
important
– Exascale system will be a special-purpose system, not a general-

purpose one.


