
Introduction to Parallel
Programming for

Multicore/Manycore Clusters

Introduction

Kengo Nakajima
Information Technology Center

The University of Tokyo

Descriptions of Class

• Technical & Scientific Computing I (4820-1027)
– 科学技術計算Ⅰ

– Department of Mathematical Informatics
• Seminar on Computer Science I (4810-1204)

– コンピュータ科学特別講義Ⅰ

– Department of Computer Science

2

Changes in 2015
• 2009-2014

– Introduction to FEM Programming
• FEM: Finite-Element Method：有限要素法

– Summer (I) : FEM Programming for Solid Mechanics
– Winter (II): Parallel FEM using MPI

• The 1st part (summer) is essential for the 2nd part (winter)

• Problems
– Many new (international) students in Winter, who did not take the

1st part in Summer
– They are generally more diligent than Japanese students

• 2015 (Information in the printed handbook is wrong)
– Summer (I) : Multicore programming using OpenMP
– Winter (II): FEM + Parallel FEM using MPI for Heat Conduction
– Part I & II are independent (maybe...)

3

4

Motivation for Parallel Computing
(and this class)

• Large-scale parallel computer enables fast computing in
large-scale scientific simulations with detailed models.
Computational science develops new frontiers of science
and engineering.

• Why parallel computing ?
– faster & larger
– “larger” is more important from the view point of “new frontiers of

science & engineering”, but “faster” is also important.
– + more complicated
– Ideal: Scalable

• Solving Nx scale problem using Nx computational resources during same
computation time (weak scaling)

Intro

Scientific Computing = SMASH
• You have to learn many things.
• Collaboration (or Co-Design) will be

important for future career of each of
you, as a scientist and/or an
engineer.
– You have to communicate with people

with different backgrounds.
– It is more difficult than communicating

with foreign scientists from same area.
• (Q): Computer Science,

Computational Science, or
Numerical Algorithms ?

5Intro

Science

Modeling

Algorithm

Software

Hardware

This Class ...
• Target: Parallel FVM (Finite-

Volume Method) using OpenMP
• Science: 3D Poisson Equations
• Modeling: FVM
• Algorithm: Iterative Solvers etc.

• You have to know many components
to learn FVM, although you have
already learned each of these in
undergraduate and high-school
classes.

6Intro

Science

Modeling

Algorithm

Software

Hardware

Road to Programming for “Parallel”
Scientific Computing

7Intro

Unix, Fortan, C etc.

Programming for Fundamental
Numerical Analysis

(e.g. Gauss-Seidel, RK etc.)

Programming for Real World
Scientific Computing

(e.g. FEM, FDM)

Programming for Parallel
Scientific Computing

(e.g. Parallel FEM/FDM)

Big gap here !!

Intro

The third step is important !
• How to parallelize applications ?

– How to extract parallelism ?
– If you understand methods, algorithms,

and implementations of the original
code, it’s easy.

– “Data-structure” is important

• How to understand the code ?
– Reading the application code !!
– It seems primitive, but very effective.
– In this class, “reading the source code” is encouraged.
– 3: FVM, 4: Parallel FVM

8

1. Unix, Fortan, C etc.

2. Programming for Fundamental
Numerical Analysis

(e.g. Gauss-Seidel, RK etc.)

3. Programming for Real World
Scientific Computing

(e.g. FEM, FDM)

4. Programming for Parallel
Scientific Computing

(e.g. Parallel FEM/FDM)

Kengo Nakajima 中島研吾 (1/2)
• Current Position

– Professor, Supercomputing Research Division, Information
Technology Center, The University of Tokyo（情報基盤センター）

• Department of Mathematical Informatics, Graduate School of Information
Science & Engineering, The University of Tokyo（情報理工・数理情報学）

• Department of Electrical Engineering and Information Systems, Graduate
School of Engineering, The University of Tokyo（工・電気系工学）

– Visiting Senior Researcher, Advanced Institute for
Computational Science (AICS), RIKEN

• Research Interest
– High-Performance Computing
– Parallel Numerical Linear Algebra (Preconditioning)
– Parallel Programming Model
– Computational Mechanics, Computational Fluid Dynamics
– Adaptive Mesh Refinement, Parallel Visualization

9

Kengo Nakajima (2/2)
• Education

– B.Eng (Aeronautics, The University of Tokyo, 1985)
– M.S. (Aerospace Engineering, University of Texas, 1993)
– Ph.D. (Quantum Engineering & System Sciences, The University

of Tokyo, 2003)
• Professional

– Mitsubishi Research Institute, Inc. (1985-1999)
– Research Organization for Information Science & Technology

(1999-2004)
– The University of Tokyo

• Department Earth & Planetary Science (2004-2008)
• Information Technology Center (2008-)

– JAMSTEC (2008-2011), part-time
– RIKEN (2009-), part-time

10

• Supercomputers and Computational Science
• Overview of the Class
• Future Issues

11Intro

Computer & CPU

• Central Processing Unit （中央処理装置）：CPU
• CPU’s used in PC and Supercomputers are based on

same architecture
• GHz: Clock Rate

– Frequency: Number of operations by CPU per second
• GHz -> 109 operations/sec

– Simultaneous 4-8 instructions per clock

12Intro

Multicore CPU
13

CPU
コア（Core）

CPU
Core

Core

CPU
Core

Core

Core

Core

Single Core
1 cores/CPU

Dual Core
2 cores/CPU

Quad Core
4 cores/CPU

• GPU: Manycore
– O(101)-O(102) cores

• More and more cores
– Parallel computing

• Oakleaf-FX at University of
Tokyo: 16 cores
– SPARC64TM IXfx

• Core= Central
part of CPU

• Multicore CPU’s
with 4-8 cores
are popular
– Low Power

Intro

GPU/Manycores
• GPU：Graphic Processing Unit

– GPGPU: General Purpose GPU
– O(102) cores
– High Memory Bandwidth
– Cheap
– NO stand-alone operations

• Host CPU needed
– Programming: CUDA, OpenACC

• Intel Xeon/Phi: Manycore CPU
– 60 cores
– High Memory Bandwidth
– Unix, Fortran, C compiler
– Currently, host CPU needed

• Stand-alone will be possible soon

14Intro

Parallel Supercomputers
Multicore CPU’s are connected through network

15

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

Intro

Supercomputers with
Heterogeneous/Hybrid Nodes

16

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

Intro

17

Performance of Supercomputers
• Performance of CPU: Clock Rate
• FLOPS (Floating Point Operations per Second)

– Real Number
• Recent Multicore CPU

– 4-8 FLOPS per Clock
– (e.g.) Peak performance of a core with 3GHz

• 3×109×4(or 8)=12(or 24)×109 FLOPS=12(or 24)GFLOPS

• 106 FLOPS= 1 Mega FLOPS = 1 MFLOPS
• 109 FLOPS= 1 Giga FLOPS = 1 GFLOPS
• 1012 FLOPS= 1 Tera FLOPS = 1 TFLOPS
• 1015 FLOPS= 1 Peta FLOPS = 1 PFLOPS
• 1018 FLOPS= 1 Exa FLOPS = 1 EFLOPS

Intro

18

Peak Performance of Oakleaf-FX
Fujitsu PRIMEHPC FX10 at U.Tokyo

• 1.848 GHz
• 8 FLOP operations per Clock
• Peak Performance (1 core)

– 1.848×8= 14.78 GFLOPS
• Peak Performance (1 node/16

cores)
– 236.5 GFLOPS

• Peak Performance of Entire
Performance
– 4,800 nodes，76,800 cores
– 1.13 PFLOPS

Intro

19

TOP 500 List
http://www.top500.org/

• Ranking list of supercomputers in the world
• Performance (FLOPS rate) is measured by

“Linpack” which solves large-scale linear
equations.
– Since 1993
– Updated twice a year (International Conferences in

June and November)
• Linpack

– iPhone version is available

Intro

20

• PFLOPS: Peta (=1015) Floating OPerations per Sec.
• Exa-FLOPS (=1018) will be attained in 2020

Intro

http://www.top500.org/

GFLOPS

10 PF

1 PF
100 TF

21
http://www.top500.org/

Site Computer/Year Vendor Cores Rmax Rpeak Power

1 National Supercomputing
Center in Tianjin, China

Tianhe-2 Intel Xeon E5-2692, TH
Express-2, IXeon Phi2013 NUDT 3120000 33863

(= 33.9 PF) 54902 17808

2 Oak Ridge National
Laboratory, USA

Titan
Cray XK7/NVIDIA K20x, 2012 Cray 560640 17590 27113 8209

3 Lawrence Livermore
National Laboratory, USA

Sequoia
BlueGene/Q, 2011 IBM 1572864 17173 20133 7890

4 RIKEN AICS, Japan K computer, SPARC64 VIIIfx , 2011
Fujitsu 705024 10510 11280 12660

5 Argonne National
Laboratory, USA

Mira
BlueGene/Q, 2012 IBM 786432 8587 10066 3945

6 Swiss Natl. Supercomputer
Center, Switzerland

Piz Daint
Cray XC30/NVIDIA K20x, 2013, Cray 115984 6271 7789 2325

7 TACC, USA Stampede
Xeon E5-2680/Xeon Phi, 2012 Dell 462462 5168 8520 4510

8 Forschungszentrum Juelich
(FZJ), Germany

JuQUEEN
BlueGene/Q, 2012 IBM 458752 5009 5872 2301

9 DOE/NNSA/LLNL, USA Vulcan
BlueGene/Q, 2012 IBM 393216 4293 5033 1972

10 Government, USA Cray CS-Storm/Xeon E5-
2670/2680/NVIDIA K40, 2014 Cray 72800 3577 6132 1499

44th TOP500 List (November, 2014)

Rmax: Performance of Linpack (TFLOPS)
Rpeak: Peak Performance (TFLOPS), Power: kW

Intro

22
http://www.top500.org/

Site Computer/Year Vendor Cores Rmax Rpeak Power

1 National Supercomputing
Center in Tianjin, China

Tianhe-2 Intel Xeon E5-2692, TH
Express-2, IXeon Phi2013 NUDT 3120000 33863

(= 33.9 PF) 54902 17808

2 Oak Ridge National
Laboratory, USA

Titan
Cray XK7/NVIDIA K20x, 2012 Cray 560640 17590 27113 8209

3 Lawrence Livermore
National Laboratory, USA

Sequoia
BlueGene/Q, 2011 IBM 1572864 17173 20133 7890

4 RIKEN AICS, Japan K computer, SPARC64 VIIIfx , 2011
Fujitsu 705024 10510 11280 12660

5 Argonne National
Laboratory, USA

Mira
BlueGene/Q, 2012 IBM 786432 8587 10066 3945

6 Swiss Natl. Supercomputer
Center, Switzerland

Piz Daint
Cray XC30/NVIDIA K20x, 2013, Cray 115984 6271 7789 2325

7 TACC, USA Stampede
Xeon E5-2680/Xeon Phi, 2012 Dell 462462 5168 8520 4510

8 Forschungszentrum Juelich
(FZJ), Germany

JuQUEEN
BlueGene/Q, 2012 IBM 458752 5009 5872 2301

9 DOE/NNSA/LLNL, USA Vulcan
BlueGene/Q, 2012 IBM 393216 4293 5033 1972

10 Government, USA Cray CS-Storm/Xeon E5-
2670/2680/NVIDIA K40, 2014 Cray 72800 3577 6132 1499

48 ITC/U. Tokyo
Japan

Oakleaf-FX
SPARC64 IXfx, 2012 Fujitsu 76800 1043 1135 1177

44th TOP500 List (November, 2014)

Rmax: Performance of Linpack (TFLOPS)
Rpeak: Peak Performance (TFLOPS), Power: kW

Intro

Computational Science
The 3rd Pillar of Science

• Theoretical & Experimental Science
• Computational Science

– The 3rd Pillar of Science
– Simulations using Supercomputers

23

Th
eo

re
tic

al

Ex
pe

rim
en

ta
l

C
om

pu
ta

tio
na

l

Intro

Methods for Scientific Computing
• Numerical solutions of PDE (Partial Diff. Equations)
• Grids, Meshes, Particles

– Large-Scale Linear Equations
– Finer meshes provide more accurate solutions

24

Intro

3D Simulations for Earthquake
Generation Cycle

San Andreas Faults, CA, USA
Stress Accumulation at Transcurrent Plate Boundaries

25

Intro

Adaptive FEM: High-resolution needed at meshes with
large deformation (large accumulation)

26

Intro

h=100km h=50km h=5km

[JAMSTEC]

Typhoon Simulations by FDM
Effect of Resolution

27Intro

Simulation of Typhoon MANGKHUT
in 2003 using the Earth Simulator

[JAMSTEC]

28Intro

Simulation of Geologic CO2 Storage

[Dr. Hajime Yamamoto, Taisei]

29Intro

Simulation of Geologic CO2 Storage
• International/Interdisciplinary

Collaborations
– Taisei (Science, Modeling)
– Lawrence Berkeley National Laboratory,

USA (Modeling)
– Information Technology Center, the

University of Tokyo (Algorithm, Software)
– JAMSTC (Earth Simulator Center)

(Software, Hardware)
– NEC (Software, Hardware)

• 2010 Japan Geotechnical Society
(JGS) Award

30Intro

Simulation of Geologic CO2 Storage
• Science

– Behavior of CO2 in supercritical state at deep reservoir
• PDE’s

– 3D Multiphase Flow (Liquid/Gas) + 3D Mass Transfer
• Method for Computation

– TOUGH2 code based on FVM, and developed by Lawrence
Berkeley National Laboratory, USA

• More than 90% of computation time is spent for solving large-scale linear
equations with more than 107 unknowns

• Numerical Algorithm
– Fast algorithm for large-scale linear equations developed by

Information Technology Center, the University of Tokyo
• Supercomputer

– Earth Simulator (Peak Performance: 130 TFLOPS)
• NEC, JAMSEC

31Intro

Concentration of CO2 in Groundwater
Meshes with higher resolution provide more accurate

prediction ⇒ Larger Model/Linear Equations

[Dr. Hajime Yamamoto, Taisei]

32Intro

33

Motivation for Parallel Computing,
again

• Large-scale parallel computer enables fast computing in
large-scale scientific simulations with detailed models.
Computational science develops new frontiers of science
and engineering.

• Why parallel computing ?
– faster
– larger
– “larger” is more important from the view point of “new frontiers of

science & engineering”, but “faster” is also important.
– + more complicated
– Ideal: Scalable

• Solving Nx scale problem using Nx computational resources during same
computation time.

Intro

• Supercomputers and Computational Science
• Overview of the Class
• Future Issues

34Intro

Our Current Target: Multicore Cluster
Multicore CPU’s are connected through network

35

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

Intro

• OpenMP
 Multithreading
 Intra Node (Intra CPU)
 Shared Memory

• MPI
 Message Passing
 Inter Node (Inter CPU)
 Distributed Memory

Memory Memory Memory Memory Memory

Our Current Target: Multicore Cluster
Multicore CPU’s are connected through network

36

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

Intro

• OpenMP
 Multithreading
 Intra Node (Intra CPU)
 Shared Memory

• MPI
 Message Passing
 Inter Node (Inter CPU)
 Distributed Memory

Memory Memory Memory Memory Memory

Our Current Target: Multicore Cluster
Multicore CPU’s are connected through network

37

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

Intro

• OpenMP
 Multithreading
 Intra Node (Intra CPU)
 Shared Memory

• MPI
 Message Passing
 Inter Node (Inter CPU)
 Distributed Memory

Memory Memory Memory Memory Memory

38

Flat MPI vs. Hybrid

Hybrid：Hierarchal Structure

Flat-MPI：Each Core -> Independent

core
core
core
corem

em
or

y core
core
core
corem

em
or

y core
core
core
corem

em
or

y core
core
core
corem

em
or

y core
core
core
corem

em
or

y core
core
core
corem

em
or

y

m
em

or
y

m
em

or
y

m
em

or
y

core

core

core

core

core

core

core

core

core

core

core

core

Intro

• MPI only
• Intra/Inter

Node

• OpenMP
• MPI

Example of OpnMP/MPI Hybrid
Sending Messages to Neighboring Processes

MPI: Message Passing, OpenMP: Threading with Directives

Intro 39

!C
!C– SEND

do neib= 1, NEIBPETOT
II= (LEVEL-1)*NEIBPETOT
istart= STACK_EXPORT(II+neib-1)
inum = STACK_EXPORT(II+neib) - istart

!$omp parallel do
do k= istart+1, istart+inum

WS(k-NE0)= X(NOD_EXPORT(k))
enddo

call MPI_Isend (WS(istart+1-NE0), inum, MPI_DOUBLE_PRECISION, &
& NEIBPE(neib), 0, MPI_COMM_WORLD, &
& req1(neib), ierr)
enddo

40

• In order to make full use of modern supercomputer systems with
multicore/manycore architectures, hybrid parallel programming
with message-passing and multithreading is essential.

• MPI for message–passing and OpenMP for multithreading are the
most popular ways for parallel programming on multicore/manycore
clusters.

• In this class, we “parallelize” a finite-volume method code with
Krylov iterative solvers for Poisson’s equation on Fujitsu PRIMEHPC
FX10 supercomputer at the University of Tokyo (Oakleaf-FX) .

• Because of limitation of time, we are (mainly) focusing on
multithreading by OpenMP.

• ICCG solver (Conjugate Gradient iterative solvers with Incomplete
Cholesky preconditioning) is a widely-used method for solving linear
equations.

• Because it includes “data dependency” where writing/reading data
to/from memory could occur simultaneously, parallelization using
OpenMP is not straight forward.

41

• We need certain kind of reordering in order to extract parallelism.

• Lectures and exercise on the following issues related to OpenMP
will be conducted:
 Finite-Volume Method (FVM)
 Kyrilov Iterative Method
 Preconditioning
 Implementation of the Program
 Introduction to OpenMP
 Reordering/Coloring Method
 Parallel FVM Code using OpenMP

• (If we have time) Lectures and exercise on the following issues
related to MPI (and OpenMP) will be conducted:
 Parallel FVM on Distributed Memory Systems
 Very Brief Introduction of MPI
 Data Structure for Parallel FVM
 Parallel FVM Code using OpenMP/MPI Hybrid Parallel Programming

Model

Intro-01 42

Date ID Title
Apr-06 (M) CS-01 Introduction
Apr-13 (M) CS-02 FVM (1/2)
Apr-20 (M) CS-03 FVM (2/2)
Apr-27 (M) CS-04 Login to FX10, OpenMP (1/2)
May-11 (M) CS-05 OpenMP (2/2)
May-18 (M) CS-06 Reordering (1/2)
May-25 (M) CS-07 Reordering (2/2)
May-28 (Th) CS-08 Parallel Code by OpenMP (1/2)
Jun-01 (M) (canceled)
Jun-08 (M) CS-09 Parallel Code by OpenMP (2/2)
Jun-15 (M) CS-10 OpenMP/MPI Hybrid (1/3)
Jun-22 (M) (canceled)
Jun-26 (F) CS-11 OpenMP/MPI Hybrid (2/3)
Jun-29 (M) (canceled)
Jul-06 (M) CS-12 OpenMP/MPI Hybrid (3/3)

“Prerequisites”

• Fundamental physics and mathematics
– Linear algebra, analytics

• Experiences in fundamental numerical algorithms
– LU factorization/decomposition, Gauss-Seidel

• Experiences in programming by C or Fortran
• Experiences and knowledge in UNIX
• User account of ECCS2012 must be obtained:

– http://www.ecc.u-tokyo.ac.jp/doc/announce/newuser.html

43

Strategy
• If you can develop programs by yourself, it is ideal... but

difficult.
– focused on “reading”, not developing by yourself
– Programs are in C and Fortran

• Lectures are done by ...

• Lecture Materials
– available at NOON Friday through WEB.

• http://nkl.cc.u-tokyo.ac.jp/15s/
– NO hardcopy is provided (Today is exceptional)

• Starting at 08:30
– You can enter the building after 08:00

• Taking seats from the front row.
• Terminals must be shut-down after class.

44

Intro-01

Grades
• 1 or 2 Reports on programming

45

If you have any questions, please feel
free to contact me !

46

• Office: 3F Annex/Information Technology Center #36
– 情報基盤センター別館3F 36号室

• ext.: 22719
• e-mail: nakajima(at)cc.u-tokyo.ac.jp
• NO specific office hours, appointment by e-mail

• http://nkl.cc.u-tokyo.ac.jp/15s/
• http://nkl.cc.u-tokyo.ac.jp/seminars/2015-Spring/ 日本語資
料（一部）

47

Keywords for OpenMP
• OpenMP

– Directive based, (seems to be) easy
– Many books

• Data Dependency
– Conflict of reading from/writing to memory
– Appropriate reordering of data is needed for “consistent”

parallel computing
– NO detailed information in OpenMP books: very complicated

4848

Some Technical Terms
• Processor, Core

– Processing Unit (H/W), Processor=Core for single-core proc’s
• Process

– Unit for MPI computation, nearly equal to “core”
– Each core (or processor) can host multiple processes (but not

efficient)
• PE (Processing Element)

– PE originally mean “processor”, but it is sometimes used as
“process” in this class. Moreover it means “domain” (next)

• In multicore proc’s: PE generally means “core”

• Domain
– domain=process (=PE), each of “MD” in “SPMD”, each data set

• Process ID of MPI (ID of PE, ID of domain) starts from “0”
– if you have 8 processes (PE’s, domains), ID is 0~7

• Supercomputers and Computational Science
• Overview of the Class
• Future Issues

49Intro

Key-Issues towards Appl./Algorithms
on Exa-Scale Systems

Jack Dongarra (ORNL/U. Tennessee) at ISC 2013

• Hybrid/Heterogeneous Architecture
– Multicore + GPU/Manycores (Intel MIC/Xeon Phi)

• Data Movement, Hierarchy of Memory

• Communication/Synchronization Reducing Algorithms
• Mixed Precision Computation
• Auto-Tuning/Self-Adapting
• Fault Resilient Algorithms
• Reproducibility of Results

50Intro

Supercomputers with
Heterogeneous/Hybrid Nodes

51

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

Intro

Hybrid Parallel Programming Model is
essential for Post-Peta/Exascale

Computing
• Message Passing (e.g. MPI) + Multi Threading (e.g.

OpenMP, CUDA, OpenCL, OpenACC etc.)
• In K computer and FX10, hybrid parallel programming is

recommended
– MPI + Automatic Parallelization by Fujitsu’s Compiler

• Expectations for Hybrid
– Number of MPI processes (and sub-domains) to be reduced
– O(108-109)-way MPI might not scale in Exascale Systems
– Easily extended to Heterogeneous Architectures

• CPU+GPU, CPU+Manycores (e.g. Intel MIC/Xeon Phi)
• MPI+X: OpenMP, OpenACC, CUDA, OpenCL

Intro 52

This class is also useful for
this type of parallel system

53

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

CPU
Core

Core

Core

Core

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

GPU
Manycore
C C C C

C C C C

C C C C

C C C C

・・・・・・・・・

Intro

Parallel Programming Models
• Multicore Clusters (e.g. K, FX10)

– MPI + OpenMP and (Fortan/C/C++)
• Multicore + GPU (e.g. Tsubame)

– GPU needs host CPU
– MPI and [(Fortan/C/C++) + CUDA, OpenCL]

• complicated,

– MPI and [(Fortran/C/C++) with OpenACC]
• close to MPI + OpenMP and (Fortran/C/C++)

• Multicore + Intel MIC/Xeon-Phi (e.g. Stampede)
– Xeon-Phi needs host CPU (currently)
– MPI + OpenMP and (Fortan/C/C++) is possible

• + Vectorization

Intro 54

55

Future of Supercomputers (1/2)
• Technical Issues

– Power Consumption
– Reliability, Fault Tolerance, Fault Resilience
– Scalability (Parallel Performancce)

• Petascale System
– 2MW including A/C, 2M$/year, O(105～106) cores

• Exascale System (103x Petascale)
– 2020-2023 (?)

• 2GW (2 B$/year !), O(108～109) cores

– Various types of innovations are on-going
• to keep power consumption at 20MW (100x efficiency)
• CPU, Memory, Network ...

– Reliability

56

Future of Supercomputers (2/2)

• Not only hardware, but also numerical models and
algorithms must be improved:
– 省電力（Power-Aware/Reducing Algorithms）
– 耐故障（Fault Resilient Algorithms）
– 通信削減（Communication Avoiding/Reducing Algorithms）

• Co-Design by experts from various area (SMASH) is
important
– Exascale system will be a special-purpose system, not a general-

purpose one.

