Introduction to Parallel FEM in C
Parallel Data Structure

Kengo Nakajima
Information Technology Center

Programming for Parallel Computing (616-2057)
Seminar on Advanced Computing (616-4009)

Intro-pFEM

Parallel Computing

» Faster, Larger & More Complicated

« Scalability

— Solving NX scale problem using N* computational
resources during same computation time
» for large-scale problems: Weak Scaling
* e.g. CG solver: more iterations needed for larger problems

— Solving a problem using NX computational resources
during 1/N computation time
« for faster computation: Strong Scaling

Intro-pFEM

What is Parallel Computing ? (1/2)

 to solve larger problems faster

Homogeneous/Heterogeneous
Porous Media

Lawrence Livermore National Laboratory

very fine meshes are

A 4

Homogeneous Heterogeneous required for simulations of
heterogeneous field.

Intro-pFEM

What is Parallel Computing ? (2/2)

 PC with 1GB memory : 1M meshes are the limit for FEM

- Southwest Japan with 1,000km x 1,000km x 100km in 1km mesh
-> 108 meshes

» Large Data -> Domain Decomposition -> Local Operation
* Inter-Domain Communication for Global Operation

Data Data
Larg e-Scale Communication
Data Local @ Local
Data Data Local Local
Data Data

Intro-pFEM

What is Communication ?

» Parallel Computing -> Local Operations

 Communications are required in Global Operations
for Consistency.

Intro pFEM

Operations in Parallel FEM

SPMD: Single-Program Multiple-Data

Large Scale Data -> partitioned into Distributed Local Data Sets.

FEM code can assembles coefficient matrix for each local data set :
this part could be completely local, same as serial operations

Global Operations & Communications happen only in Linear Solvers
dot products, matrix-vector multiply, preconditioning

~— =
Local Data

S —— o

~— -
Local Data

— —

— I
Local Data

— —

e =
Local Data

— —

Intro-pFEM

Parallel FEM Procedures

* Design on “Local Data Structure” is important
— for SPMD-type operations in the previous page

* Matrix Generation
Preconditioned lterative Solvers for Linear Equations

Intro pFEM

Bi-Linear Square Elements
Values are defined on each node

|

O

|

divide into two domains by
“node-based” manner, where
number of “nodes (vertices)” are
balanced.

Local information is not enough
for matrix assembling.

Information of overlapped
elements and connected nodes
are required for matrix

0 assembling on boundary nodes.

Intro pFEM

Local Data of Parallel FEM

e Node-based partitioning for IC/ILU type preconditioning methods

e Local data includes information for :
Nodes originally assigned to the partition/PE

Elements which include the nodes : Element-based operations (Matrix
Assemble) are allowed for fluid/structure subsystems.

All nodes which form the elements but out of the partition

e Nodes are classified into the following 3 categories from the

viewpoint of the message passing
Internal nodes originally assigned nodes
External nodes in the overlapped elements but out of the partition
Boundary nodes external nodes of other partition

e Communication table between partitions

e NO global information required except partition-to-partition
connectivity

Node-based Partitioning

Internal nodes - elements - external nodes

PE#1 PE#0
21 22 23 24 25
O O O O o
17 18 19
160 O O O ©20
12 13 14
1@ @ O O O 15
7 8 9
6@ @) O 010
@ @ O O O
1 2 3 4 5
PE#3 PE#2

Intro pFEM

PE#1
4 5 6 12
O O O O
1 O O O O 11
2 3
@ @ O O
1 8 9 10
11 10 12
O O O
5 @ "6 O 9
3 @ o O 8
4
[@ O
1 2 1

O—0O—=06
4 5

O—O0—=O

1 2 3
PE#2

10

Node-based Partitioning
Internal nodes - elements - external nodes

®Partitioned nodes themselves (Internal Nodes) =
®Elements which include Internal Nodes REZELER

®External Nodes included in the Elements 4} &=
In overlapped region among partitions.

®|nfo of External Nodes are required for completely local

element—based operations on each processor.
15 6 7
Q=8 —®

O
®)
—\
~
O,
o~
)

"

.
O
N
'
N\

@
o O
)
O

Intro pFEM

11

12

We do not need communication

during matrix assemble !!

®Partitioned nodes themselves (Internal Nodes)
®Elements which include Internal Nodes

®External Nodes included in the Elements
In overlapped region among partitions.

®|nfo of External Nodes are required for completely local

element—based operations on each processor.
15 6 7

Parallel Computing in FEM
SPMD: Single-Program Multiple-Data

Linear Solvers

Local Data

Local Data Linear Solvers

Linear Solvers

Local Data

Local Data

Linear Solvers

Intro-pFEM 13

Parallel Computing in FEM seice
SPMD: Single-Program Multiple-Data sess’

Linear Solvers

MPI

Linear Solvers

MPI

Linear Solvers

MPI

Linear Solvers

Intro-pFEM 14

Parallel Computing in FEM

SPMD: Single-Program Multiple-Data

15

6

®
14 5
10 ‘1 '2 '3
o—9©

11 12

Intro-pFEM 1

Linear Solvers

Local Data

Local Data Linear Solvers

Linear Solvers

Local Data

Local Data

Linear Solvers

15

Parallel Computing in FEM
SPMD: Single-Program Multiple-Data

Linear Solvers

Linear Solvers

Linear Solvers

Linear Solvers

16

Intro-pFEM

Parallel Computing in FEM
SPMD: Single-Program Multiple-Data

Local Data ===p> m Linear Solvers
Local Data == m
Local Data ===> m Linear Solvers

Intro-pFEM 17

Linear Solvers

What is Communications ?

* to get information of “external nodes” from external
partitions (local data)

« “Communication tables” contain the information

Intro-pFEM

18

Intro-pFEM 19

1D FEM: 12 nodes/11 elem’s/3 domains

Intro-pFEM 20

1D FEM: 12 nodes/11 elem’s/3 domains

0

0
1

1
2

2
3

3
4

4
3

o}
6

6
(7] 7

7
(8) 8

8
9

9
10

10
11

Intro-pFEM

“Internal Nodes” should be balancedm

0
0
1 1 #0

2
2

3
3

4
4

5
5 #1

6
6
(7] 7
7
(3) 8
8

9
9
10

11

Intro-pFEM 22

Matrices are incomplete !

#0

#1

10 , #2

d

Intro-pFEM 23

Connected Elements + External Nodes

#0

#1

I~ (o)) (&)} |~ (V)

#H2

Intro-pFEM

1D FEM: 12 nodes/11 elem’s/3 domains

I~ (o)} (&) B[OV
(o] ~ (=2} (3 - w

O N OO | bW [IDN|—~|O

-
o

—_—
—_—

#0

#1

#2

24

Intro-pFEM 25

1D FEM: 12 nodes/11 elem’s/3 domains

Intro-pFEM 26

Local Numbering for SPMD

Numbering of internal nodes is 1-N (0-N-1), same operations
in serial program can be applied. How about numbering of
external nodes ?

Intro pFEM

PE: Processing Element

Processor, Domain, Process SPM D
mpirun -np M <Program>

[| I

PE #0 PE #1 PE #2 PE #M-1

00000 Program

Program l Program l Program

Data #0 Data #1 Data #2

Each process does same operation for different data

Large-scale data is decomposed, and each part is computed by each process
It is ideal that parallel program is not different from serial one except communication.

Data #M-1

Intro-pFEM

Local Numbering for SPMD

Numbering of external nodes: N+1, N+2 (N,N+1)

000090
00000906

000090

28

Intro-pFEM 29

1D FEM: 12 nodes/11 elem’s/3 domains

Integration on each element, element matrix -> global matrix
Operations can be done by info. of internal/external nodes
and elements which include these nodes

#0

Intro-pFEM 30

Finite Element Procedures

* |nitialization
— Control Data
— Node, Connectivity of Elements (N: Node#, NE: Elem#)
— Initialization of Arrays (Global/Element Matrices)
— Element-Global Matrix Mapping (Index, Item)

* Generation of Matrix
— Element-by-Element Operations (do icel= 1, NE)

* Element matrices
» Accumulation to global matrix

— Boundary Conditions

* Linear Solver
— Conjugate Gradient Method

Intro-pFEM

Preconditioned CG Solver

Compute r®= pb-[A]x©® -
for 1=1, 2, . D0 0
solve [M]zCG-D= rG-1 0 D, 0
pi_= r@-1 zG-1 _
= M]=| ...
pD= 7 0 0 D,
else 0 0 0

Bi—_lz Pi-1/Pi-> -
pM= zG-D + g, pG-D

endif

qO= [A]p®

o = pij1/pPgL

XM= x(-D + ¢.p

rd= rG-H - ¢.q®

check convergence |r]|

@D
-
o

Intro-pFEM

Preconditioning, DAXPY

Local Operations by Only Internal Points: Parallel
Processing is possible

0
/* 1
//—= {z}= [Minv]{r}
*/ 2
for (i=0; i<N; i++) {
} WLZI[i] = WIDD][i] * W[RIL[i]; 3
4
/* 5
//— {x}= {x} + ALPHAx*{p} DAXPY: double a{x} plus {y}
// {rl= {r} - ALPHAx{q} 6
*/
for (i=0; i<N; i++) { V4
ULi] += Alpha * W[P][i];
WIRILi] —= Alpha * W[QILil; 8
}
9
10
11

Intro-pFEM

Dot Products

Global Summation needed: Communication ?

0
/% 1
//—— ALPHA= RHO / {p} {a}
*/ 2
Cc1 =0.0;
for (i=0; i<N; i++) { 3
Gl += W[PI[i] = WLQ][i];
] 4
Alpha = Rho / C1; 5
6
7
8
9
10
11

MPI Programming 34

P#0 | A0 |BO|CO|DO P#0 | op.A0-A3|0op.B0-B3 |op.C0-C3|op.DO-D3
MPI_Reduce miioomesl
— P#2 | A2|B2|C2|D2 P#2
P#3 |A3|B3|C3|D3 P#3

 Reduces values on all processes to a single value
— Summation, Product, Max, Min etc.

e« MPI_Reduce (sendbuf,recvbuf,count,datatype,op,root,comm)

— sendbuf choice | starting address of send buffer
— recvbuf choice O starting address receive buffer
type is defined by datatype”
— count int I number of elements in send/receive buffer
— datatype wmpPI_Datatype | data type of elements of send/recive buffer
FORTRAN MPI_INTEGER, MPI_REAL, MP1 _DOUBLE PRECISION, MPI_CHARACTER etc.
C MPI_INT, MP1_FLOAT, MPI_DOUBLE, MPI_CHAR etc
— op MPI_Op I reduce operation

MPI_MAX, MPI1_MIN, MPI_SUM, MP1_PROD, MPI_LAND, MPI_BAND etc
Users can define operations by MP1 _OP_CREATE

— root int I rank of root process
— comm MPI_Comm | communicator

MPI Programming 35

P#0 | A0 |B0|CO|DO P#0 | A0 B0 |CO|DO

M PI BC a st P#1 Broadcast P#1 | A0 |BO|CO|DO
. P#2 P#2 | A0 |BO|CO|DO

P#3 P#3 | A0 |B0|co|Do

« Broadcasts a message from the process with rank "root" to all other
processes of the communicator

e MPI1 _Bcast (buffer,count,datatype,root,comm)

— buffer choice 1/0 starting address of buffer
type is defined by datatype”

— count int I number of elements in send/recv buffer

— datatype MPI_Datatype | data type of elements of send/recv buffer
FORTRAN MPI_INTEGER, MPI_REAL, MPI_DOUBLE PRECISION, MPI_CHARACTER etc.
C MP1 _INT, MPI_FLOAT, MPI1_DOUBLE, MPI_CHAR etc.

— root int I rank of root process

— comm MPI_Comm | communicator

MPI Programming 36

P#0 | AO|BO|CO|DO P#0 | op.A0-A3|0p.B0-B3|0p.CO-C3|op.D0O-D3

All reduce
M PI AI I red u Ce #1 |A1|B1|C1|D1 d P#1 | op.A0-A3 | 0p.B0-B3|0p.C0-C3|0p.D0-D3
— P#2 P#2

A2|B2|C2|D2 0p.A0-A3 | 0p.B0-B3 | 0p.CO-C3|0p.DO-D3
P#3 | A3|B3|C3|D3 P#3 | op.A0-A3 | 0p.B0-B3 |0p.CO-C3|0p.D0-D3

Y

« MPI_Reduce + MPI|_Bcast

« Summation (of dot products) and MAX/MIN values are likely to utilized in
each process

e« call MP1_Allreduce

(sendbuf, recvbuf,count,datatype,op, comm)
— sendbuf choice | starting address of send buffer
— recvbuf choice O starting address receive buffer

type is defined by datatype”

— count int | number of elements in send/recv buffer
— datatype wPI_Datatype | data type of elements of send/recv buffer
— op MPI_Op I reduce operation

— comm MPI_Comm | communicator

MPI Programming 37

“op” of MPI_ReducelAIIreduce

MP1_ Reduce
(sendbuf, recvbuf,count,datatype,op, root,comm)

« MPI_MAX, MP1_MIN Max, Min
« MPI_SUM, MP1_PROD Summation, Product
 MPI_LAND Logical AND

Intro-pFEM

Matrix-Vector Products
Values at External Points: P-to-P Communication

//— {a}= [A] {p}

for (i=0; i<N; i++) {
WLQI[i] = Diagli] = W[PIL[i];
for (j=Index[i]; j<Index[i+1]; j++) {
WLQI[i] += AMat[jI+W[P][Item[j]1];
}
}

38

Intro-pFEM 39

Mat-Vec Products: Local Op. Possible

0 0
1 1
2 2
3 3
4 4
5 B 5
6 - 6
7 7
8 8
9 9
10 10
11 11

Intro-pFEM

Mat-Vec Products: Local Op. Possible

0
1
2
3

N oo | o B

(@)

10

11

0
1
2
3

N o | o B

(00)

10

11

40

Intro-pFEM

Mat-Vec Products: Local Op. Possible

0
1
2
3

W | I N|—~| O

W N| =] O

0
1
2
3

W I N|—~|O

W N | =] O

41

Mat-Vec Products: Local Op. #0

000090

Mat-Vec Products: Local Op. #1

0 0

1 B 1

2 B 2

3 3

0 0

1 B 1

2 - 2

3 3

4

5 0006060

|||||||||

Mat-Vec Products: Local Op. #2

0 0
1 B 1
2 B 2
3 3
| . 0 0
1 B 1
‘ 2 - 2
3 3
4

Intro pFEM 45

1D FEM: 12 nodes/11 elem’s/3 domains

Intro pFEM 46

1D FEM: 12 nodes/11 elem’s/3 domains

Local ID: Starting from O for node and elem at each domain

Intro pFEM 47

1D FEM: 12 nodes/11 elem’s/3 domains

Internal/External Nodes

w @000

4
P
00

3

MPI Programming 48

What is Peer-to-Peer Communication ?

* Collective Communication
— MPI|_Reduce, MPI_Scatter/Gather etc.
— Communications with all processes in the communicator
— Application Area

« BEM, Spectral Method, MD: global interactions are considered
* Dot products, MAX/MIN: Global Summation & Comparison

 Peer-toPeer/Point-to-Point

n 0—0—0—0—0

— MPI_Send, MPI_Receive Y | 3 T
— Communication with limited # 00,0000
processes) i _L

* Neighbors

— Application Area
« FEM, FDM: Localized Method

Fundamental MPI

SEND: sending from boundary nodes

Send continuous data to send buffer of neighbors

« MPI_Isend
(sendbuf,count,datatype,dest, tag,comm, request)
— sendbuf choice | starting address of sending buffer
— count I I number of elements sent to each process
— datatype | I data type of elements of sending buffer
— dest I | rank of destination

O—O0—0 8 9 11 12
10 9 11 12
5 .—.6—() 9 T T
36— @©® O 38 8 6
4 I4 :[5
e—0 O O O
1) 7 7 1 2 3
PE#1 PE#2

49

MPI Programming

MPI Isend

* Begins a non-blocking send

— Send the contents of sending buffer (starting from sendbuf, number of messages: count)
to dest with tag .

— Contents of sending buffer cannot be modified before calling corresponding MPI_Waitall.

« MPI1 _ Isend
(sendbuf count,datatype,dest, tag,comm, request)
sendbuf choice 1 starting address of sending buffer
— count int I number of elements in sending buffer
— datatype wpI_Datatype | datatype of each sending buffer element
— dest int l rank of destination
— tag int I message tag

This integer can be used by the application to distinguish
messages. Communication occurs if tag’s of
MP1_ Isend and MP1__lrecv are matched.

Usually tag is set to be “0” (in this class),
— comm MPI_Comm | communicator
— request wMPI_Request O communication request array used in MP1_Waitall

Fundamental MPI

RECYV: receiving to external nodes
Recv. continuous data to recv. buffer from neighbors

 MPI _lrecv
(recvbuf,count,datatype,dest, tag,comm, request)

— recvbuf choice | starting address of receiving buffer

— count I I number of elements in receiving buffer
— datatype | I data type of elements of receiving buffer
— source I I rank of source

51

MPI Programming

C
MPI Irecv _C

* Begins a non-blocking receive

— Recelving the contents of receiving buffer (starting from recvbuf, number of messages:
count) from source with tag .

— Contents of receiving buffer cannot be used before calling corresponding MP1_Waitall.

 MPI1 _lrecv
(recvbuf,count,datatype,source, tag,comm, reguest)

— recvbuf choice | starting address of receiving buffer

— count int I number of elements in receiving buffer

— datatype wpI_Datatype | datatype of each receiving buffer element
— source int l rank of source

— tag int I message tag

This integer can be used by the application to distinguish
messages. Communication occurs if tag’s of
MP1_ Isend and MP1__lrecv are matched.

Usually tag is set to be “0” (in this class),
— comm MPI_Comm | communicator
— request wMPI_Request O communication request array used in MP1_Waitall

MPI Programming 53

MPI Waitall

« MPI_Warntall blocks until all comm’s, associated with request in the array,
complete. It is used for synchronizing MP1_1send and MP1_Irecyv in this class.

« At sending phase, contents of sending buffer cannot be modified before calling
corresponding MP1_Wairtal l. At receiving phase, contents of receiving buffer

cannot be used before calling corresponding MP1_Wairtall.
e« MPI1_Isend and MP1_lrecv can be synchronized simultaneously with a single
MP1_ Wartall if it is consitent.
— Same request should be used in MP1_Isend and MP1_lrecv.

* |ts operation is similar to that of MP1_Barrier but, MPI _Wairtall can not be

replaced by MP1 _Barrier.

— Possible troubles using MP1_Barrier instead of MP1 _Waital l: Contents of request and
status are not updated properly, very slow operations etc.

« MPI _Wairtall (count,request,status)

— count int I number of processes to be synchronized
— request wPI_Request 170 comm. request used in MP1_Waitall (array size: count)
— status wpL_status O array of status objects

MPI_STATUS SIZE: defined in “mpif.h”, “mpi.h’

Intro pFEM 54

Node-based Partitioning
Internal nodes - elements - external nodes

PE#1
PE#1 4 5 6 12 15 6]
i PE#0 O—O—0O0—0 O—O0—0
21 22 23 24 25 PE#0
Q O O O O Y '\) e 7\ /) [
1(/ ./ ./ \)11 O ./ O/ \)
2 3 14 13 4)
17 18 19) [)) [
160 O O O O 20 e— 0 O0—0O0 6—0O0—0—0
7 8 9 10 10 1 2 3
12 13 14 1 10 12
1@ o O O O 15 O O O
1 8 o
5 6 o lo oLy 5 @—0—0 9
30—0-—03
@ @ O O O
1 2 3 4 5
e—0 O
PE#3 PE#2 1 2 T

Intro pFEM 55

Description of Distributed Local Data

1.0 9 11 j)z * |Internal/External Points
T T — Numbering: Starting from internal pts,
I then external pts after that
8 © O,), O6 _
4 |3 * Neighbors
—O—0O——=0 — Shares overlapped meshes
r 1 2 3 — Number and ID of neighbors

« External Points

— From where, how many, and which
external points are received/imported ?

« Boundary Points

— To where, how many and which
boundary points are sent/exported ?

Intro pFEM

External Nodes (4} 51) : RECEIVE

PE#2 : receive information for “external nodes”

56

Intro pFEM

Boundary Nodes (#Z5) : SEND

PE#2 : send information on “boundary nodes”

15 6 7
O O O
PE#0

O O O @)

14 13 4 5

I\ I\ f)

G/ O/ \q

10 1 2 3
1 10
O O
5 @ Q
6
3@ Q
4

PE#3

57

S2-r 58

Distributed Local Data Structure for
Parallel Computation

 Distributed local data structure for domain-to-doain
communications has been introduced, which is appropriate
for such applications with sparse coefficient matrices (e.g.

FDM, FEM, FVM etc.).

— SPMD
— Local Numbering: Internal pts to External pts

— Generalized communication table

* Everything is easy, if proper data structure is defined:
— Values at boundary pts are copied into sending buffers

— Send/Recv
— Values at external pts are updated through receiving buffers

