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Approximation Method for PDE
Partial Differential Equations: {R# 4 A X

« Consider solving the following differential
equation (boundary value problem), domain V,
boundary S :

L(u) = f

* U (solution of the equation) can be approximated
by function u,, (linear combination)

M
U, = Z a WV, . Trial/Test Function (EATEIE) (known
= function of position, defined in domain and
- at boundary. “Basis” in linear algebra.

d.  Coefficients (unknown)
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Method of Weighted Residual
MWR: EHA T SREE

* u,, is exact solution of u if R (residual : 5%2)= 0:

R=L(u,)- f

* In MWR, consider the condition where the following
iIntegration of R multiplied by w (weight/weighting
function : E#A %K) over entire domain is 0

jWR(uM)dV:O

« MWR provides “smoothed” approximate solution,
which satisfies R=0 in the domain V
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Variational Method (Ritz) (1/2)

 |tis widely known that exact solution u provides
extreme values (max/min) of “functional : JLEE% I(u)

— Euler equation: differential equation satisfied by u, if functional
has extreme values (1#&{#&)

— Euler equation is satisfied, if u provides extreme values of I(u).
— provide extreme values : {8 &t 4 (or stationarize)

 For example, functional, which corresponds to
governing equations of linear elasticity (principle of
virtual work, equilibrium equations), is “principle of
minimum potential energy (principle of minimum strain
energy) (ZRILF—&/N, BEAIRILF—/N) 7.

EI\l
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Variational Method (Ritz) (2/2)
o Substitute the following approx. solution into I(u),

and calculate coefficients a; under the condition

where 1,,=I(u,,) provides extreme values, then u,,
IS obtained:

i=1

« Variational method is theoretical method, and
can be only applied to differential equations,
which has equivalent variational problem.

— In this class, we mainly use MWR
— Brief overview of Ritz method will given later today.
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Finite Element Method (FEM)
BRZFRE

Entire region is discretized into fine
elements (£%) , and the following
approximation is applied to each
element:

— Z:ai‘lli
=1

MWR or Variational Method is applied to each
element

Each element matrix is accumulated to global
matrix, and solution of obtained linear equations
provides approx. solution of PDE.

Details of FEM will be provided after next week

%ﬁ.’?’




Intro-02

Example of MWR (1/3)

 Thermal Equation

2 2
/18T o1 +Q=0 InV
ox* oy’

A:Conductivity, Q:Heat Gen./Volume
T =0 at boundary S

* Approximate Solution
T:Zaj\Pj
j=1
 Residual
L (0%, 0%,
R(a;,x,y) = ﬂZa{ L+ ‘]+Q

oy°
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Example of MWR (2/3)

* Multiply weighting function w;, and apply integration
over V:

JWiRdV=O

 If a set of weighting function w; Is a set of n
different functions, the above integration provides
a set of n linear equations:

o # trial/test functions = # weighting functions

L o°Y. 0°Y.
Zajjwiz SR dV:—IWiQdV (i=1..,n)
=L v OX oy v
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Example of MWR (3/3)

o Matrix form of the equations is described
as follows:

[Bliaj=1Q}

B —jwﬁ[aijuéiji)dv Q = ijdv
ij v i 8X2 ayz 1 [ v i

Actual approach is slightly different from this
(more detalled discussions after next week)

10



Intro-02

Various types of MWR’s

« Various types of weighting functions

e Collocation Method
e Least Square Method
e Galerkin Method

Bk
YNSE37
£5—F Uik
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Collocation Method

e Weighting function: Dirac’s Delta Function o6
5(z)=c0 if z=0

6(z)=0 if z=0, foo5(z)dz:1
W, = §(X—Xi) X:location

* |n collocation method, R (residual) is setto O at n

collocation points by feature of Dirac’s Delta Fn. o

jR5(x—xi)dV:R|X:Xi
\

* If nincreases, R approaches to O over entire
domain.

12



Least Square Method

e Weighting function:

OR
W, = —

' 0Oa,

* Minimize the following integration according to a

(unknowns):

I(a) = j[R(a x)JF dv
8R(a X)

—[I(a )]=2| {R(a X)

'

I{R(ai,x) @R(ai’x)} dV =0

oa.

}dvzo

13
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Galerkin Method

« Weighting Function = Test/Trial Function:

w, =Y.

« Galerkin, Boris Grigorievich
— 1871-1945
— Engineer and Mathematician of Russia

— He got a hint for Galerkin Method while
he was imprisoned because of anti-
czarism (1906-1907).

14
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Example (1/2)

e Governing Equation

2

d—l2J+u+x:O (0<x<1)
dx

 Boundary Conditions: Dirichlet
u=0@x=0
u=0@x=1

 Exact Solution
u_sinx

sin1

15
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Exact Solution u= X

0.08

0.06 F
> 004 f

0.02 f
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Example (2/2)

« Assume the following approx. solution:
u=x@1-x)(a, +a,x)=x(1-x)a, +x’1-x)a, =a,¥, +a,¥,
¥, =x(1-x), ¥,=x"1-X)

Test/trial function satisfies u=0@x=0,1

e Residual is as follows:

R(a,,a,,X) = X+ (-2+Xx—x%)a, +(2-6x+x* —x°)a,

o Let's apply various types of MWR to this equation

— We have two unknowns (a,, a,), therefore we need two
iIndependent weighting functions.
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Collocation Method
e Nn=2, x=1/4, x=1/2 for collocation points:

1 1
R(aj_;az;Z) =0, R(awaz’z) =0

R(a,,a,,X) =X+ (-2+x—x")a, +(2—6x+x* —x°)a,

e Solution:
20/16 -35/64|(a,| [1/4
714 718 |la,| [1/2
~ X(A-x)

u (42 + 40x)

217
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Least Square Method

« Weighting functions, Residual:

leﬁ—R:—2+x—x2, sz(fa—R:2—6x+x2—x3
0a, oa,
R(a,,a,,X) = X+ (-2+x—x*)a, +(2—6x+x*—x%)a,
e Solution:

R(a,.a x)@—Rdx—fR( 2, xX) (=24 x—x2) dx = 0
|R@. a,. s = [R@ua. =

L OR L 2 3
jR(ai,az,x)—dx:jR(ai,az,x)(2—6x+x ~x%) dx =0
0 5a2 0

202 101 1(a| (55 46161 41713
= = , d, =
{707 1572}{ } {399} - M T 246137" 2T 246137

_ Xd=x)  (46161+ 41713%)
" 246137

19
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Galerkin Method

« Weighting functions, Residual:
W, =¥, =x1-Xx), W,=%,=x°1-Xx)

R(a,,a,,X) = X+ (-2+Xx—x*)a, +(2—6x+x*—x%)a,
e Results:
ol !
R(a,,a,,X)¥, dx= | R(a,,a,,X) (x—x?) dx =0
J0 J0

"R(a,.a,, X)W, dx = [R(a,,a,, ) (* =x*) dx =0
JO J0

3/10 3/20 {a)| ([1/12 ' 71 7
— :—, a —_
{3/20 13/105}{%} {1/20} " T30 2741




Intro-02

Results

21

X Exact Collocation Least Square Galerkin
0.25 0.04401 0.04493 0.04311 0.04408
0.50 0.06975 0.07143 0.06807 0.06944
0.75 0.06006 0.06221 0.05900 0.06009

e Galerkin Method provides the most accurate solution

— |If functional exists, solutions of variational method and
Galerkin method agree.

« Many commercial
 In this class, Galer
e Least-square may

« A kind of analytical solution (later of this material)

—-EM codes use Galerkin method.

kKin method

Stokes solvers for high Re.

IS used.

orovide robust solution in Navier-
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Homework (1/2)

* Apply the following two method is the next page to
the same equations:
— Method of Moment
— Sub-Domain Method
— Results at x=0.25, 0.50, 0.75

 Compare the results of “collocation method” on
“non-collocaion points” with exact solution
— EXxplain the behavior
— Try different collocation points

22
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Homework (2/2)

e Method of Moment (E—* > k%)
wo=x" (i>1)

— Weighting functions ?

e Sub-Domain Method (&B44E1E %)

— Domain V is divided into subdomains V; (i=1-n), and
weighting functions w; are given as follows:

W, =

1 for pointsin V.
O for points out of V,

— Two unknowns, two sub domains

23
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Gauss’s Theorem

j(@U + N +8W]dv =J‘(UnX +Vn, +an)dS
S

Hox oy e
3D (x,y,2) \n(*‘\s
Domain V surrounded by smooth closed < v
surface S \ /

3 continuous functions defined In V :
- Ux,y,z), V(x\y,2), W(x\y,2)
Outward normal vector n on surface S:

- n,, n, n,;:direction cosine

25



* Infinitesimal prism which is parallel g \WX
with x-axis: < V
j v = [[dy dzj —dx Z/\X

=”U(x2,y,z) dy dz—j U (x,,Y,2)dydz

26



Proof of Gauss’s Theorem (2/3)

e Infinitesimal surface dS:

dydz=+n,dS (if n, >0) e—
dy dz=-n_dS (if n <0) 5 .

e thus: .
j%—lidV:”dyde%—lidx l

AV

:”U(xz,y,z)dydz—”U(Xl,y,Z)dydz n:(n,n,n)

x1lyr iz

:jU nXdS+IU n, dsS

AS, AS,

27
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Proof of Gauss’s Theorem (3/3)

* Integration over the entire surface:

jaatidv ju ds —

v
X, X, X

e Extension to y-, and z- direction: m
ou oV oW

J( ™ +8y+ aZ)dV:.S[(UnX+Vny+WnZ)dS 0
n= (n n n)

x1lyr iz

28
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Green’s Theorem (1/2)

e Assume the following functions:

U= A@, V = A@, W = A@

OX oy 0z

e Thus :
oUu ov oW [628 0°B 828] [aAaB OA OB 6AaB)
+—+ =A +

+— + +
ox oy oz ox°>  oy® or° OX OX oy oy 0z oz

o Apply Gauss’s theorem:

2 2 2
jAaB GI? 0°B ny JaAaB+aAaB+aAaB n
oz° OX OX oy oy o0z oz

oB
:j(UnXJrVny +Wn j ( yJrgn )dS

S S
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Green’s Theorem (2/2)

e (cont.)

jA—n +—n +—n dS = j 688x+886y+8882 dS
oxon oyon o0z on

oB . L
jA— dS —— Gradient of B to the direction of normal vector

on

o Finally:

2 2 2
J‘AaB 55 0°B 4V — IA dS—I 8AaB+aAaB+aAﬁB ny
oz° OX OX oy oy o0z oz

o Appears often after next week
— From 2" order differentiation to 1st order differentiation.
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In Vector Form

e (Gauss’s Theorem

_[V-de:J'WTndS
\Y S

e Green’s Theorem

IvAu dv = j(vVu)Tn ds —I(VTV)(Vu)dV

\Y

31
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e Gauss-Green’s Theorem

 Numerical Method for PDE (Variational Method)
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Variational Method (Ritz) (1/2)

 |tis widely known that exact solution u provides
extreme values (max/min) of “functional : JLEE% I(u)

— Euler equation: differential equation satisfied by u, if functional
has extreme values (1#&{#&)

— Euler equation is satisfied, if u provides extreme values of I(u).
— provide extreme values : B &t % (or stationarize)

 For example, functional, which corresponds to
governing equations of linear elasticity (principle of
virtual work, equilibrium equations), is “principle of
minimum potential energy (principle of minimum strain
energy) (ZRILF—&/N, BEAIRILF—/N) 7.

EI\l
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Variational Method (Ritz) (2/2)
o Substitute the following approx. solution into I(u),

and calculate coefficients a; under the condition

where 1,,=I(u,,) provides extreme values, then u,,
IS obtained:

i=1

« Variational method is theoretical method, and
can be only applied to differential equations,
which has equivalent variational problem.

— In this class, we mainly use MWR
— Brief overview of Ritz method will given later today.

34
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Application of Variational Method (1/5)

e Consider the following integration I(u) in 2D-domain
V, where u(x,y) iIs unknown function of x and y:

-

-f3(3] (5] =

.

dVv

'S

Q: known value

u=0 at boundary S
. . N . S
e I(u) is “functional CGRLEE%L) " of function u
e U*Is a twice continuously differentiable function and
minimizes I(u). 77 Is an arbitrary function which
satisfies »=0 at boundary S, and o Is a parameter.
Consider the following equation:
u(x, y)=u"(x,y)+a-n(xy)
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Application of Variational Method (2/5)

« At this stage, the following condition is necessary:

H(u)> 1{u")
e Assume that functional I(u™+an) is a function of a.
Functional | provides minimum value, If a=0.

Therefore, the following equation is obtained:

%, . \
—Iu +a- =0
oo ( )

a=0

e According to the definition of functional 1(u),
following equation is obtained

J- ou 877+8u 877_Q77 4V =0
OX OX oy oy

Vv
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I(u):j%(a—uj + %uj —2Qu ¢dV

37

iI(u*+05 771 =0

aa a=0
0 E(a_ujz _au_a(auj ou_olu+an) v on
da |2\ ox) [ ox da\ox) ox  ox ox o
o (@) on o 2 fy@y] e o fya)] oo
da\ox) ox' T oal2lox) | ox ox' oeal2\ley) | oy oy
0 8(u*+05-77)_
~(Qu)=0=—""=Qr

I[@u on , au 8U—andV:O

sl ox ox oy oy
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Application of Variational Method (3/5)

« Apply Green’s theorem on 1st and 2"d term of LHS,
and apply integration by parts, then following
equation IS obtained' (A=n, B=u*) (see next page) :

j[ o +QjﬁdV+_[77dS 0

* * *

where au :au n +5Ln Gradient of u* in the direction
on  ox oy ’ of normal vector

e At boundary S, 77:O:

Qv

* (A) Is required, |f the above Is true for arbitrary »

o°u” 82*
OX* 6y2 *Q=0 (&)
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Green’s Theorem

(A=n, B=u*)

N@u* on , o’

on Qn]dV 0

OX OX oy oy

T

]dv jn—ds j(

OX OX oYy

, . ,
j(an ou”  an du ]de=—77(@ u2
Y oy Y OX

OX

aZ

ox oy oy

on ou”  on du jdv

0y°

*jdVJrIn—dS

39
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Application of Variational Method (4/5)

e Equation (A) is called “Euler equation”

— Necessary condition of u*, which minimizes functional 1(u), is
that u* satisfies the Euler equation.

e Sufficient condition:

— Assume that u” is solution of the Euler equation and an=4du"

1(u" +ou”)-1 (u*):

S5

ol=0
First Variation

N°=0

Second Variation

s — R /Z\
E_c_-’_?'r
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Application of Variational Method (5/5)

It has been proved that u” (solution of Euler equation)
minimizes functional I(u).

I (u* +5u*)2 I (u*)

 Therefore, boundary value problem by Euler equation
(A) with B.C. (u=0) Is equivalent to variational problem.

— Solving equivalent variational problem provides solution of
Euler equation (Poission equation in this case)

— Functional must exist !
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Approx. by Variational Method (1/4)

e Functional

1 2

I(u):j{l(d—uj —iuz—xu}dx

- | 2 dX 2

e Boundary Condition
u=0@x=0

u=0@x=1

e Obtain u, which “stationalizes” functional I(u) under
this B.C.

— Corresponding Euler equation is as follows (same as
equation in p.15):
d°u B-1
-5?+u+x:0 (0<x<1) (B-1)

42
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Approx. by Variational Method (2/4)

« Assume the following test function with n-th order for
function u, which is twice continuously differentiable:

u, =x-(1-x)-(a, +a,x+ax2 +---+a,x"*) (B-2)

 If we increase the order of test function, u, Is closer
to exact solution u. Therefore, functional I(u) can be

approximated by I(u,):
— If I(u,) stationarizes, I(u) also stationarizes.

* \We need to obtain set of unknown coefficients a,,
which satisfies the following stationary condition:

ol(u,) . _
. =0 (k=1~n) (B-3)

43
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Ritz Method

* Equation (B-3) is linear equations for a,-a..

 |f this solutions is applied to equation (B-2),
approximate solution, which satisfies Euler equation
(B-1), Is obtained.
— Approximate solution, but satisfies Euler equation strictly

(BE R

* This type of method using a set of coefficients a;-a, IS
called “Ritz Method”.



Approx. by Variational Method (3/4)

* Ritz Method, n=2
u, =x-(1-x)-(a, +a,x)=x-(1—x)-a, + x*-(1-x)-a,

ol (u,) Ojﬁ(l X— %2 \1—3x+ X )dX}al

oay

M- 2x) (2x—3x2)— x*(1— x)? [ox a, + [ x*(1— x)dx = 0
i o
H{l 2x)2x—3x? )- X*(1- X }dx}

+H(Zx—3x +x°)2x— 2% - xg)dx}a2 +jx3(1— X)Jdx = 0
0 0



Supplementation for (3/4) (1/3)

 Ritz Method, n=2

u

, = X-(1=x)-(a, +a,x)=x-(1-x)-a,+ x*-(1-x)-a,

I(u):j{%(g—ijz —%uz —xu}dx




Supplementaﬂon for (3/4) (2/3)

2

(1-2x)a, +(2x—?>x2)a2]2 —%[x-(l— x)-a, +x-(1- x)-az]

- (1-x)-3,+ X -(1-x)-3,

J{_l[{(1—2x)(2x—3x2)—x3-(1—x)2}dx}a2 Jl'x2 (1-x)dx =0



Supplementaﬂon for (3/4) (3/3)

2

(1-2x)a +(2x—?>x2)a2]2 —%[x-(l— X)-a, +x-(1- x)-az]

(1), - ) a,]

1
o'—.H

{(1— 2x)2x - 3x% - - (1- x)? }dx_a,l
J{HZ 3x?f —x* - (1- )’ }dx}az—f'x?’-(l—x)dx:o

0
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Approx. by Variational Method (4/4)

« Final linear equations are as follows:

3/10 3/20 1/12 ) 7
—_ a —
{3/20 13/105}{ } {1/20} o 369 o4

0= X=X 714 63x)
369

 This result is identical with that of Galerkin Method
— NOT a coincidence !!

49
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Galerkin Method
« Weighting functions (which satisfy u=0@x=0,1),

Residual:
w, =¥, =x(1-x), w,

=¥, =x’(1-X)

R(a,,a,,X) = X+ (-2+x—x*)a, +(2—6x+x*—x%)a,

* Results:
"R(a,.a,,x) ¥, dx =
J0 o

o]
R(a,,a,,x)¥V, dx =
J0

"R(a,,a,,X) (x—x2) dx =0
0

"R(a,.a,,x) (X2 —x°) dx =0
J0

13/10 3/20 |[a] ([1/12 71
3/20 13/105}{%}_{1/20} — 7369
0= X=X 71 4 63x)

a,

7

41
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Ritz Method & Galerkin Method (1/4)

U, = x-(1-x)-(a, +a,x)=aw, +a,w,

afdu) 1, ié% du, 0 (du, dw,
()_-([{Z(dxj " ‘X“}dx aaiz(dx” o aal( j (aﬂ o
CREY 2} Xy = (a,w, +a,w, )-w.
aai |2 2 aal 1 2 1
ol (u O e lex. Q2 _ .
(2):0:> aai_Xu2] X 6a1 X- W,
2ch
L dw, ) dw, dw | [
— 1 1 2 B _
'c[{( dxj T dx az}dx L[ Wl{(WlalJrWzaz)JfX}dX} 0
aI(UZ):O:>
oa,
dw, dw, dw,

- H W, {(wa, +w,a,)+ x}dx} 0

aw,

51
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Ritz Method & Galerkin Method (2/4)

=0=
oay
-, i T S
‘([ {(d_xlj a + Xm dxz az}dx - L‘; w, {(w.a, +w,a, )+ X}dx} _q

0 ( dw, j dw, dw, d2w,
+ W, ——
dx dx dx dx

( j dW dW dZW2
dX dx Wy dx?

}i{}
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Ritz Method & Galerkin Method (3/4)

8I(u2):O:> d—lzj+u+x:0
0a, dx

u=aw, +a,Ww,

1 2 2
—jwl{(d \/Vl<311+d e a2j+(wla1+wza2)+x}dx:0

Galerkin Method !!
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Ritz Method & Galerkin Method (4/4)

 This example is a very special case. But, generally
speaking, results of Galerkin method and Ritz
method agree, Iif functional exists.

« Although Ritz method provides approx. solution, that
satisfies Euler equation in strict sense. Therefore,
solution of Ritz method is closer to exact solution.

— This Is the main reason that Galerkin method Is accurate.
* Please just remember this.
e This relationship between Ritz and Galerkin is not
correct if functional does not exist.

— In these cases, Galerkin method is not necessarily the
best method from the viewpoint of accuracy and
robustness.
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