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• Unstructured grid with irregular data structure
• Large-scale sparse matrices
• Preconditioned parallel iterative solvers
• “Real-world” ill-conditioned problems

Large-scale Simulations by Parallel 
FEM Procedures
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• Various ill-conditioned problems
– For example, matrices derived from coupled NS equations are 

ill-conditioned even if meshes are uniform.
• In this work, we are focusing on 3D solid mechanics 

applications with:
– heterogeneity
– contact conditions
– BILU/BIC

• Ideas can be extended to other fields.

What are ill-conditioned problems ?
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Ill-Conditioned Problems
Heterogeneous Fields, Distorted Meshes
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Contact Problems in Simulations  of 
Earthquake Generation Cycle
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• are the most critical issues in scientific computing
• are based on 

– Global Information: condition number, matrix properties etc.
– Local Information: properties of elements (shape, size …)

• require knowledge of
– background physics
– applications 

Preconditioning Methods (of Krylov 
Iterative Solvers) for Real-World 

Applications
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• Block Jacobi type Localized Preconditioners
• Simple problems can easily converge by simple 

preconditioners with excellent parallel efficiency.
• Difficult (ill-conditioned) problems cannot easily converge

– Effect of domain decomposition on convergence is significant, 
especially for ill-conditioned problems.
• Block Jacobi-type localized preconditioiners
• More domains, more iterations

– There are some remedies (e.g. deep fill-ins, deep overlapping), 
but they are not efficient.

– ASDD does not work well for really ill-conditioned problems.

Technical Issues of “Parallel” 
Preconditioners in FEM
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Technical Issues of “Parallel” 
Preconditioners for Iterative Solvers

E=100

E=103

3D Solid Mechanics
E: Young’s Modulus

• If domain boundaries are 
on “stronger” elements, 
convergence is very bad.



3D Linear Elastic Problem with 203

Tri-Linear Hexahedral Elements 
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Number of Iterations for Convergence
BILU(0)-GPBiCG with 8 domains

• ■■：= 0.25
• ■ ：E=1.00

• 1-processor
– ■：E=100  ，31 iterations
– ■：E=10+3 , 84 iterations

• Harder, More ill-conditioned

• 8-processors (MPI, no-overlapping)
– ■：E=100 ， 52 iter’s（×1.68）
– ■：E=10+3，158 iter’s（×1.88）
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Remedies: Domain Decomposition

• Avoid “Strong Elements”
– not practical

• Extended Depth of Overlapped Elements
– Selective Fill-ins, Selective Overlapping [KN 2007]

• adaptive preconditioning/domain decomposition methods which utilize 
features of FEM procedures

• PHIDAL/HID (Hierarchical Interface Decomposition) 
[Henon & Saad 2007]

• Extended HID [KN 2009]
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Extension of Depth of Overlapping

●：Internal Nodes，●：External Nodes
■：Overlapped Elements
●：Internal Nodes，●：External Nodes
■：Overlapped Elements
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Number of Iterations for Convergence
BILU(0)-GPBiCG, 8-domains (PE’s)

Effect of Extended Depth of Overlapping

Depth of 
Overlap E=100 E=103

0 52 158

1 33 103

2 32 100

3 32 97

4 31 82

Single 
Domain 31 84
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• Development of robust and efficient parallel 
preconditioning method

• Construction of strategies for optimum selection of 
preconditioners, partitioning, and related 
methods/parameters, such as:

– Selective Fill-ins
– Selective Overlapping/HID  

Final goal of this work 
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• Utilization of both of:
– global information obtained from derived coefficient matrices
– very local information, such as information of each mesh in 

finite-element applications.

• Usually, this type of work mainly focuses on features of 
derived coefficient matrices (e.g. ILUT)

– In real applications, convergence of parallel iterative solvers is 
often affected by local heterogeneity and/or discontinuity of the 
field, as shown in this presentation. 

How to get to the final goal ?
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Overview
• Background

– Selective Blocking
– More General Problems

• Extension of Overlapped Zones

• Preconditioning/Partitioning Methods
– Target Application
– Selective Fill-ins, Selective Overlapping

• HID
– Hierarchical Interface Decomposition

• Extended HID
• Fields with Heterogeneity
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• Quasi-static stress accum. process at plate boundaries
• Non-linear contact problems with Newton-Raphson iter's
• Ill-conditioned linear equations due to penalty constraint 

by ALM (Augmented Lagrangean).
• Parallel FEM with domain decomposition (GeoFEM)

Initial Motivation:
Contact Problems in Simulations  of 

Earthquake Generation Cycle
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Contact Problems in Simulations of 
Earthquake Generation Cycle

• Assumptions (GeoFEM: http://geofem.tokyo.rist.or.jp/)
– Infinitesimal deformation, static contact relationship.

• Location of nodes is in each "contact pair" is identical.
• “Consistent” node number and position 

Contact
Surface

• Large-scale problems
– Parallel preconditioned iterative solvers 

• Special preconditioning : Selective 
Blocking.

– provides robust and smooth convergence 
in 3D solid mechanics simulations for 
geophysics with contact.

• Special partitioning
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Selective Blocking [KN 2001] 
Special Method for Contact Problem

Strongly coupled nodes are put into the same diagonal block.
Full LU factorization for each block.

2ux0= ux1 +  ux2
2uy0= uy1 +  uy2
2uz0= uz1 +  uz2

ux0= ux1
uy0= uy1
uz0= uz1

0 1 2

0 1

3 nodes form 
1 selective block.

2 nodes form 
1 selective block.

2ux0= ux1 +  ux2
2uy0= uy1 +  uy2
2uz0= uz1 +  uz2

ux0= ux1
uy0= uy1
uz0= uz1

0 1 2

0 1

2ux0= ux1 +  ux2
2uy0= uy1 +  uy2
2uz0= uz1 +  uz2

ux0= ux1
uy0= uy1
uz0= uz1

0 1 2

0 1

3 nodes form 
1 selective block.

2 nodes form 
1 selective block.
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More General Problems
• Moving boundaries due to large slip conditions
• Inconsistent node number (and location) at boundary 

surfaces
– Assembly structure for machine parts.

• where meshes for each part are separately generated.

– Commercial FEM codes (e.g. ABAQUS, NASTRAN) can treat 
problems for this type of “inconsistent” cases. (single PE, 
direct method for linear equations). 
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Example of Assembly Structure
Jet Engine
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More General Problems
Inconsistent Number of Nodes at Boundary Surfaces

• Difficult to apply “selective blocking”
– Size of each “selective block” may be too large for full LU 

factorization
• Difficult to apply “special partitioning”
• Remedy

– Higher-order fill-in’s
– Extension of overlapped zones for parallel computing



Number of Iterations for Convergence
BILU(0)-GPBiCG, 8-domains (PE’s)

Effect of Extended Depth of Overlapping

Depth of 
Overlap E=100 E=103

0 52 158

1 33 103

2 32 100

3 32 97

4 31 82

Single 
Domain 31 84
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• Background
– Selective Blocking
– More General Problems

• Extension of Overlapped Zones

• Preconditioning/Partitioning Methods
– Target Application
– Selective Fill-ins, Selective Overlapping

• HID
– Hierarchical Interface Decomposition

• Extended HID
• Fields with Heterogeneity



Parallel Preconditioning 25

Robust and efficient preconditioning 
for parallel iterative solvers in more 

general cases

• Selective fill-ins for serial & parallel computing
• Selective overlapping for parallel computing

• Features of individual element are utilized.  
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Example for “Inconsistent” Cases
This model simulates contact problem in assembly structure

• Each block is discretized into cubic tri-linear elements
– elastic material: E= 1.00, Poisson ration= 0.25

• Each block is connected through elastic truss elements 
generated on each node on contact surfaces. 
– Truss elements are crossing. 
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Example for “Inconsistent” Cases
This model simulates contact problem in assembly structure

• Elastic coefficient of truss elements is set to 103 times as
large as that of solid elements.
– This condition simulates constraint boundary conditions for

contact.
• Distributed uniform force at z=zmax surface

– u=0@x=0, v=0@y=0, w=0@z=0
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Selective Fill-ins [KN 2007]
• Apply higher order of fill-ins between nodes which 

connect to truss-type elements.
– Similar concept as “selective blocking”

• In this work: BILU(1+)
– BILU(2) for these special nodes (2nd order fill-ins)
– BILU(1) for general nodes (1st order fill-ins)

• Cost is similar to that of BILU(1), but effect of 
preconditioning is expected to be competitive with that of 
BILU(2).  
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Idea of “Selective Fill-ins”: ILU(1+)
● 2nd order fill-in’s are 

considered for these nodes

● 2nd order fill-in’s are NOT 
considered for these nodes

● 2nd order fill-in’s are NOT 
considered for these nodes
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Summary of Problem Setting 
Single Core

• Problem Size
– 32,768 elements (except truss’s)     117,708 DOF

• Preconditioned GPBiCG [Zhang, 1997]
– for general matrices, although the matrices are SPD

• BILU（0,1,2），Selective Fill-in (BILU(1+))

• Environment 
– dual-core AMD Opteron 275 (2.2GHz)
– F90 + MPI
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Selective Overlapping [KN 2007]
• Same rules in “selective fill-ins” are applied to extention 

of overlapping zones. 
– Similar concept as “selective blocking”

• In selective overlapping, extension of overlapping for 
nodes that are not connected to special elements for 
contact conditions is delayed. 

• The increase in cost for computation and communication 
by extension of overlapped elements is suppressed.
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Internal Nodes for Partitioning 
● Internal Nodes

Domain Boundary
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One-Layer Overlapping 
(d=0/1)

This is the general configuration 
of local data set for parallel
FEM (one-layer of overlapping).

● Internal Nodes
● External Nodes
■ Overlapped Elements
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Extension of Overlapped Zones 
(2-layers: d=2) ● Internal Nodes

● External Nodes
■ Overlapped Elements
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Extension of Overlapped Zones Extension of Overlapped Zones 
(d=2 and d=1+) ● Internal Nodes

● External Nodes
■ Overlapped Elements



Parallel Preconditioning 37

Extension of Overlapped Zones 

Selective Overlapping (d=1+)
“Delayed” extension for elements 
which do not include nodes connected 
to truss-type elements

Extension of Overlapped Zones 
(d=2 and d=1+) ● Internal Nodes

● External Nodes
■ Overlapped Elements
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Extension of Overlapped Zones 

delayed delayed

● Internal Nodes
● External Nodes
■ Overlapped Elements

Selective Overlapping (d=2+)
Reduced cost for computations
and communications

Extension of Overlapped Zones 
(d=3 and d=2+) 
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BILU with selective fill-in/overlapping
• BILU (p)-(d)

– p level of fill-ins (0, 1, 1+, 2, 2+ …)
– d depth of overlapping (0, 1, 1+, 2, 2+ …)
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Summary of Problem Setting
Multiple Cores

• Problem Size
– Large: 1,000,000 elements (except truss’s), 3,152,412 DOF

• Preconditioned GPBiCG [Zhang, 1997]
– for general matrices, although the matrices are SPD
– Localized preconditioning (block Jacobi type)

• BILU（0,1,2），Selective Fill-in (BILU(1+))

• Partitioning
– GeoFEM-based local data structure: http://geofem.tokyo.rist.or.jp/
– Recursive Coordinate Bisection （RCB）: 8~64

• Selective Overlapping

• Environment 
– 64-core AMD Opteron 275 (2.2GHz), Infiniband
– F90 + MPI
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Domain boundaries are on “truss’s”
worst cases for convergence
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• Selective Fill-ins
• Selective Overlapping

– Features of FEM applications (element-by-element) are utilized
– Factorization processes are executed according to information 

of each element
• much cheaper than ILUT-based methods, where dropping rules are 

applied after forming entire matrix

• Generally, BILU(1+)-(1+) is robust and efficient
• Significant improvement of convergence if d (depth of 

overlapping) is 0⇒1⇒1+.

Summary 
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• Background
– Selective Blocking
– More General Problems

• Extension of Overlapped Zones

• Preconditioning/Partitioning Methods
– Target Application
– Selective Fill-ins, Selective Overlapping

• HID
– Hierarchical Interface Decomposition

• Extended HID
• Fields with Heterogeneity



• Multilevel Domain Decomposition
– Extension of Nested Dissection

• Non-overlapping at each level: Connectors, Separators
• Suitable for Parallel Preconditioning Method

HID: Hierarchical Interface 
Decomposition [Henon & Saad 2007]

level-1：●
level-2：●
level-4：●

0 0 0 1 1 1

0,2 0,2 0,2 1,3 1,3 1,3

2 2 2 3 3 3

2 2 2 2,3 3 3 3

2 2 2 2,3 3 3 3

0 0 0 0,1 1 1 1

0 0 0 0,1 1 1 1

0,1
2,3

0,1
2,3

0,1
2,3
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Parallel ILU for each Connector
at each LEVEL

• The unknowns are reordered 
according to their level
numbers, from the lowest to 
highest.

• The block structure of the 
reordered matrix leads to 
natural parallelism if ILU/IC 
decompositions or 
forward/backward 
substitution processes are 
applied.

0
1
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3

0,1

0,2

2,3

1,3
0,1,
2,3

Level-1

Level-2

Level-4
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Communications at Each Level
Forward Substitutions

do lev= 1, LEVELtot
do i= LEVindex(lev-1)+1, LEVindex(lev)

SW1= WW(3*i-2,R); SW2= WW(3*i-1,R); SW3= WW(3*i  ,R)
isL= INL(i-1)+1; ieL= INL(i)
do j= isL, ieL

k= IAL(j)
X1= WW(3*k-2,R); X2= WW(3*k-1,R); X3= WW(3*k  ,R)
SW1= SW1 - AL(9*j-8)*X1 - AL(9*j-7)*X2 - AL(9*j-6)*X3
SW2= SW2 - AL(9*j-5)*X1 - AL(9*j-4)*X2 - AL(9*j-3)*X3
SW3= SW3 - AL(9*j-2)*X1 - AL(9*j-1)*X2 - AL(9*j  )*X3

enddo
X1= SW1; X2= SW2; X3= SW3
X2= X2 - ALU(9*i-5)*X1
X3= X3 - ALU(9*i-2)*X1 - ALU(9*i-1)*X2
X3= ALU(9*i  )*  X3
X2= ALU(9*i-4)*( X2 - ALU(9*i-3)*X3 )
X1= ALU(9*i-8)*( X1 - ALU(9*i-6)*X3 - ALU(9*i-7)*X2)
WW(3*i-2,R)= X1; WW(3*i-1,R)= X2; WW(3*i  ,R)= X3

enddo

call SOLVER_SEND_RECV_3_LEV(lev,…): Communications using
Hierarchical Comm. Tables.

enddo

Additional
Comm.
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• Multilevel Domain Decomposition
• Non-overlapped Approach

– see the paper for detailed information
• Suitable for Parallel Preconditioning Method

• Comparison with Selective Overlapping
– Cost of HID corresponds to that of (d=0) or (d=1), but as robust 

as (d=1+) or (d=2) 
– More robust than Block Jacobi.

HID: Hierarchical Interface 
Decomposition [Henon & Saad 2007]
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Results: 64 cores
Contact Problems
3,090,903 DOF
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• Background
– Selective Blocking
– More General Problems

• Extension of Overlapped Zones

• Preconditioning/Partitioning Methods
– Target Application
– Selective Fill-ins, Selective Overlapping

• HID
– Hierarchical Interface Decomposition

• Extended HID
• Fields with Heterogeneity



• Original HID cannot consider the effects of fill-ins of 
higher order at boundary nodes.

– although it’s perfect for parallel ILU(0).

Weakness of Original HID
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• Extension of Overlapped Elements
• Thicker Layers of Separators 

Extended Version of HID
Parallel Preconditioning 54



Sample Graph
(A) could be referred from (B)

for ILU(2) (depends on numbering)

2 B A 3 3

2 2 3 3

2 2 3 3

2 B A 3 3

2 2 3 3

2 2 3 3
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Sample Graph
(A) CANNOT be referred from (B) for ILU(2), because they 

are at same level and on different domain

level-1 ●
level-2 ●

2 B A 3 3

2 2 3 3

2 2 3 3

2 B A 3 3

2 2 3 3

2 2 3 3
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Domain Decomposition &
Local Data Set

level-1 ●
level-2 ●

Node-based Domain Decomposition
(Internal Nodes)
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Distributed Local Data
(Internal+External Nodes)
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2 B A 3 3
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Original Local Data Set

level-1 ●
level-2 ●

• Original HID 
– NO overlapping/1-layer 

overlapping
– cannot consider the effects 

of fill-ins of higher order for 
external nodes at same 
level.
• Effect of “A” is not considered 

for “B” in BILU(2)

2 B A 3 3

2 2 3 3

2 2 3 3

2 B A 3 3

2 2 3 3

2 2 3 3

Distributed Local Data

Range for “Global” Operations”
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2 B A 3 3

2 2 3 3

2 2 3 3

2 B A 3 3

2 2 3 3

2 2 3 3

Remedy 1: Extension of Overlapping
• Extension of Overlapping

– 2-layer overlapping
– can consider the effects of 

fill-ins of higher order for 
external nodes at same 
level.
• Effect of B can be considered 

for A in BILU(2)

– But still localized, Block 
Jacobi approach
• because the value at “A” is 

not the most recent one
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Distributed Local Data
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2 B A 3 3
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Remedy 2: Thicker Separator Layers
• Thicker Separator 

– HID-new
– can consider the effects of 

fill-ins of higher order for 
external nodes at same 
level.
• Effect of “A” can be considered 

for “B” in BILU(2)

– In global manner
– seems to provide more 

robust convergence than 
Remedy 1.

– difficulty for load-
balancing
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level-2 ●

Distributed Local Data

Range for “Global” Operations”
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• Background
– Selective Blocking
– More General Problems

• Extension of Overlapped Zones

• Preconditioning/Partitioning Methods
– Target Application
– Selective Fill-ins, Selective Overlapping

• HID
– Hierarchical Interface Decomposition

• Extended HID
• Fields with Heterogeneity



Target Application (1/3)
• 3D linear elastic problem with locally distorted elements

x

y

z

Uz=0 @ z=Zmin

Ux=0 @ x=Xmin

Uy=0 @ y=Ymin

Uniform Distributed Force in 
z-direction @ z=Zmax

(Ny-1) elements
Ny nodes

(Nx-1) elements
Nx nodes

(Nz-1) elements
Nz nodes

x

y

z

Uz=0 @ z=Zmin

Ux=0 @ x=Xmin

Uy=0 @ y=Ymin

Uniform Distributed Force in 
z-direction @ z=Zmax

(Ny-1) elements
Ny nodes

(Nx-1) elements
Nx nodes

(Nz-1) elements
Nz nodes

Parallel Preconditioning 62



Target Application (2/3)
• 3D linear elastic problem with locally distorted elem’s
• Initial mesh: cube

– distortion around Z-axis of each element
• Local Heterogeneity

– local “intensity” of distortion
– sequential Gauss algorithm [Deutsch & Journel 1988]


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Target Application (3/3)

• 3D linear elastic problem with 
locally distorted elements

• Very ill-conditioned for 
significant distortion
– requires BILU(2) or higher
– semi indefinite

• Maximum distortion= 200 deg.
• Strong Scaling

– 1283 Elements
– 6,440,067 Unknowns


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Selective Fill-ins/Overlapping with 
Threshold

• BILU (p,)-(d,)
– If E >  selective fill-ins is applied
– If E >  selective overlappng is applied

●: fill-ins of higher order and
extension of overlapping are
allowed on these nodes
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Selective Blocking/Overlapping does 
not work well in this case !

• 150 deg.: BILU(1)-(1)
• 225 deg.: BILU(2)-(2)
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Software, Linear Solvers
• MPI + FORTRAN90 (Hitachi Compiler)

– Flat MPI 
• NUMA control: Optimum case

– numactl --cpunodebind=$SOC --membind=$SOC

• Finite-Element Method
– Tri-linear hexahedral elements

• Linear Solver
– GPBiCG [Zhang 1997]

• Preconditioners
– Block ILU(2,t): 2nd order of fill-ins, Threshold parameter
– keep mij component of preconditioner [M] if mji > t

• t=0: Original BILU(2)

– Optimum value of “t” @512 cores= 0.02~0.03
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Hardware Environment
• “T2K Open Super Computer (Tokyo)”

– T2K/Tokyo
– Total 952 nodes (15,232 cores)

• each node = 4x AMD Quadcore Opteron Socket (Barcelona) 

– 45th in TOP500 (NOV. 2009)
• up to 32 nodes (512 cores) in this work
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Strategies for Domain Decomposition

• BILU (2,t, loc-d)
– Localized Block Jacobi with extended overlapping 
– d: Depth of overlapping

• BILU(2,t,loc-1), BILU(2,t,loc-2), BILU(2,t,loc-3)

• BILU (2,t, org-d)
– Original HID (HID-org) with extended overlapping

• BILU(2,t,org-1), BILU(2,t,org-2)

• BILU (2,t, new-d)
– HID with extended overlapping/thicker separators: HID-new

• BILU(2,t,new-1), BILU(2,t,new-2)
• 3 layers for level-2 separators
• NO special treatment for load-balancing
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Strategies for Domain Decomposition
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Strong Scaling, 1283 elements
MAX: 200 deg., Scalability
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Localized Block Jacobi
BILU(2,t,loc-d): not robust

Iterations Relative Performance 

• BILU(2,t,loc-2) is the best
• although BILU(2,t,loc-d)’s do not converge in some cases.

• Performance is generally worse than BILU(2,t,new-1) with HID
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• BILU(2,t,org-1) gets unstable, as core number increase (>128).
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• Extended overlapping provides robustness: BILU(2,t,org-d)
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Iterations Relative Performance 

• BILU(2,t,new-d)’s generally more robust and efficient, if number of 
cores is larger (BILU(2,t,org-d)’s are better, if core# is smaller).
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Strong Scalability: 32~512 cores
Performance of BILU(2,0.03,new-1) with 32 cores= 32.0
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• Additional Communications 
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– rate for entire solver time
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Summary
• Extended version of HID

– Extension of overlapped elements between domains
– Thicker separators

• Extended HID provides more robust and scalable 
performance than original HID and localized block Jacobi 
BILU
– Effect of thicker separator is very significant if the number of 

core is larger. 
• more effective than deeper overlapping

– Extended HID with thicker separator can introduce effect of 
external nodes efficiently in factorization and forward/backward 
substitution processes with higher order of fill-ins.
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Future Works
• Evaluation of feasibility for various types of applications of:

– Localized Block Jacobi with Extended Overlapping
• also selective fill-ins, selective overlapping

– Original HID, New HID
• Development of sophisticated domain partitioner for 

complicated geometries
– key technology for practical application of extended HID to real 

applications.
– Thickening of separator layers should be considered at every 

level for robust convergence. 
• Only at level-2 layers in the present work

– Load-balancing for extend HID
• another big technical issue to be solved in the future.
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