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• Both of convergence (robustness) and efficiency 
(single/parallel) are important

• Global communications needed
– Mat-Vec (P2P communications, MPI_Isend/Irecv/Waitall): Local 

Data Structure with HALO
 effect of latency

– Dot-Products (MPI_Allreduce)
– Preconditioning (up to algorithm)

• Remedy for Robust Parallel ILU Preconditioner
– Additive Schwartz Domain Decomposition
– HID (Hierarchical Interface Decomposition, based on global 

nested dissection) [Henon & Saad 2007], ext. HID [KN 2010]
• Parallel “Direct” Solvers (e.g. SuperLU, MUMPS etc.)

Parallel Iterative Solvers
ISS-2013
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Around the multigrid in a single slide
• Multigrid is a scalable method for solving linear equations. 
• Relaxation methods (smoother/smoothing operator in MG 

world) such as Gauss-Seidel efficiently damp high-
frequency error but do not eliminate low-frequency error. 

• The multigrid approach was developed in recognition that 
this low-frequency error can be accurately and efficiently 
solved on a coarser grid. 

• Multigrid method uniformly damps all frequencies of error 
components with a computational cost that depends only 
linearly on the problem size (=scalable).
– Good for large-scale computations

• Multigrid is also a good preconditioning algorithm for Krylov
iterative solvers.
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Multigrid is scalable
Weak Scaling: Problem Size/Core Fixed

for 3D Poisson Eqn’s (q)
MGCG= Conjugate Gradient with Multigrid Preconditioning
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Multigrid is scalable
Weak Scaling: Problem Size/Core Fixed

Comp. time of MGCG for weak scaling is constant: 
=> scalable
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Procedure of Multigrid (1/3)
12

Multigrid is a scalable method for solving linear equations. Relaxation methods 
such as Gauss-Seidel efficiently damp high-frequency error but do not eliminate 
low-frequency error. The multigrid approach was developed in recognition that 
this low-frequency error can be accurately and efficiently solved on a coarser 
grid. This concept is explained here in the following simple 2-level method. If we 
have obtained the following linear system on a fine grid :

AF uF = f

and AC as the discrete form of the operator on the coarse grid, a simple coarse 
grid correction can be given by :

uF
(i+1) = uF

(i) + RT AC
-1 R ( f - AF uF

(i) )

where RT is the matrix representation of linear interpolation from the coarse grid 
to the fine grid (prolongation operator) and R is called the restriction operator. 
Thus, it is possible to calculate the residual on the fine grid, solve the coarse 
grid problem, and interpolate the coarse grid solution on the fine grid. 
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Procedure of Multigrid (2/3)
13

This process can be described as follows :

1. Relax the equations on the fine grid and obtain the result uF
(i)

= SF ( AF, f ). This operator SF (e.g., Gauss-Seidel) is called 
the smoothing operator (or ).

2. Calculate the residual term on the fine grid by rF = f - AF uF
(i).

3. Restrict the residual term on to the coarse grid by rC = R rF.
4. Solve the equation AC uC = rC on the coarse grid ; the 

accuracy of the solution on the coarse grid affects the 
convergence of the entire multigrid system.

5. Interpolate (or prolong) the coarse grid correction on the fine 
grid by DuC

(i) = RT uC.
6. Update the solution on the fine grid by uF

(i+1) = uF
(i) + DuC

(i)
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Procedure of Multigrid (3/3)
15

• Recursive application of this algorithm for 2-level procedure to 
consecutive systems of coarse-grid equations gives a multigrid V-
cycle. If the components of the V-cycle are defined appropriately, 
the result is a method that uniformly damps all frequencies of error 
with a computational cost that depends only linearly on the 
problem size. 
− In other words, multigrid algorithms are scalable.

• In the V-cycle, starting with the finest grid, all subsequent coarser 
grids are visited only once. 
− In the down-cycle, smoothers damp oscillatory error components at different 

grid scales. 
− In the up-cycle, the smooth error components remaining on each grid level 

are corrected using the error approximations on the coarser grids. 
• Alternatively, in a W-cycle, the coarser grids are solved more 

rigorously in order to reduce residuals as much as possible before 
going back to the more expensive finer grids.
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Multigrid as a Preconditioner
17

• Multigrid algorithms tend to be problem-specific 
solutions and less robust than preconditioned Krylov
iterative methods such as the IC/ILU methods. 

• Fortunately, it is easy to combine the best features of 
multigrid and Krylov iterative methods into one algorithm
− multigrid-preconditioned Krylov iterative methods. 

• The resulting algorithm is robust, efficient and scalable.

• Mutigrid solvers and Krylov iterative solvers 
preconditioned by multigrid are intrinsically suitable for 
parallel computing. 
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Geometric and Algebraic Multigrid
18

• One of the most important issues in multigrid is the 
construction of the coarse grids. 

• There are 2 basic multigrid approaches
− geometric and algebraic 

• In geometric multigrid, the geometry of the problem is 
used to define the various multigrid components. 

• In contrast, algebraic multigrid methods use only the 
information available in the linear system of equations, 
such as matrix connectivity. 

• Algebraic multigrid method (AMG) is suitable for 
applications with unstructured grids. 

• Many tools for both geometric and algebraic methods on 
unstructured grids have been developed.

18ISS-2013



“Dark Side” of Multigrid Method
19

• Its performance is excellent for well-conditioned simple 
problems, such as homogeneous Poisson equations.

• But convergence could be worse for ill-conditioned 
problems.

• Extension of applicability of multigrid method is an active 
research area.
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Key-Issues for  Appl’s/Algorithms 
towards Post-Peta & Exa Computing

Jack Dongarra (ORNL/U. Tennessee) at ISC 2013

• Hybrid/Heterogeneous Architecture
– Multicore + GPU/Manycores (Intel MIC/Xeon Phi)

• Data Movement, Hierarchy of Memory

• Communication/Synchronization Reducing Algorithms
• Mixed Precision Computation
• Auto-Tuning/Self-Adapting
• Fault Resilient Algorithms
• Reproducibility of Results

22ISS-2013
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• Communication overhead becomes significant
• Communication-Computation Overlap

– Not so effective for Mat-Vec operations
• Communication Avoiding/Reducing Algorithms

• OpenMP/MPI Hybrid Parallel Programming Model
– (Next section)

Recent Technical Issues in Parallel 
Iterative Solvers

ISS-2013
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Communication overhead becomes 
larger as node/core number increases
Weak Scaling: MGCG on T2K Tokyo

ISS-2013
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Comm.-Comp. Overlapping
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Internal Meshes

External (HALO) Meshes



Comm.-Comp. Overlapping
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Internal Meshes

External (HALO) Meshes
Internal Meshes on 
Boundary’s

Mat-Vec operations
• Overlapping of computations 

of internal meshes, and 
importing external meshes.

• Then computation of 
international meshes on 
boundary’s 

• Difficult for IC/ILU on Hybrid 



Communication Avoiding/Reducing 
Algorithms for Sparse Linear Solvers

• Krylov Iterative Method without Preconditioning
– Demmel, Hoemmen, Mohiyuddin etc. (UC Berkeley)

• s-step method
– Just one P2P communication for each Mat-Vec during s

iterations. Convergence becomes unstable for large s.
– matrix powers kernel: Ax, A2x, A3x ...

• additional computations needed

• Communication Avoiding ILU0 (CA-ILU0) [Moufawad & 
Grigori, 2013]
– First attempt to CA preconditioning
– Nested dissection reordering for limited geometries (2D FDM)
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Comm. Avoiding Krylov Iterative 
Methods using “Matrix Powers Kernel”
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Avoiding Communication in Sparse Matrix Computations. 
James Demmel, Mark Hoemmen, Marghoob Mohiyuddin, 
and Katherine Yelick. , 2008 IPDPS



Required Information of Local Meshes 
for s-step CA computations (2D 5pt.)
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• Fault Resilient Algorithms
• Reproducibility of Results

31ISS-2013



Motivation of This Study
• Large-scale 3D Groundwater Flow 

– Poisson equations
– Heterogeneous porous media

• Parallel (Geometric) Multigrid Solvers for FVM-type appl. 
on Fujitsu PRIMEHPC FX10 at University of Tokyo 
(Oakleaf-FX)

• Flat MPI vs. Hybrid (OpenMP+MPI)
• Expectations for Hybrid Parallel Programming Model

– Number of MPI processes (and sub-domains) to be reduced
– O(108-109)-way MPI might not scale in Exascale Systems
– Easily extended to Heterogeneous Architectures

• CPU+GPU, CPU+Manycores (e.g. Intel MIC/Xeon Phi)
• MPI+X: OpenMP, OpenACC, CUDA, OpenCL
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• 3D Groundwater Flow via. Heterogeneous Porous Media
– Poisson’s equation
– Randomly distributed water conductivity

– Distribution of water conductivity is defined through methods in 
geostatistics 〔Deutsch & Journel, 1998〕

• Finite-Volume Method on Cubic Voxel Mesh

Target Application: pGW3D-FVM

• Distribution of Water Conductivity
– 10-5-10+5, Condition Number ~ 10+10

– Average: 1.0
• Cyclic Distribution: 1283

ISS-2013
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• Parallel Geometric Multigrid
• OpenMP/MPI Hybrid Parallel Programming Model
• Localized Block Jacobi Preconditioning

− Overlapped Additive Schwartz Domain 
Decomposition (ASDD)

• OpenMP Parallelization with Coloring
• Coarse Grid Aggregation (CGA), Hierarchical 

CGA

Keywords

36ISS-2013



Flat MPI vs. Hybrid

Hybrid：Hierarchal Structure

Flat-MPI：Each Core -> Independent
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Fujitsu PRIMEHPC FX10 (Oakleaf-FX)
at the U. Tokyo

• SPARC64 Ixfx (4,800 nodes, 76,800 cores)
• Commercial version of K computerｘ
• Peak: 1.13 PFLOPS (1.043 PF, 26th, 41th TOP 500 in 2013 June.)
• Memory BWTH 398 TB/sec.

38ISS-2013



Multigrid
• Scalable Multi-Level Method using Multilevel Grid for 

Solving Linear Eqn’s
– Computation Time ~ O(N) (N: # unknowns)
– Good for large-scale problems

• Preconditioner for Krylov Iterative Linear Solvers
– MGCG
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• Preconditioned CG Method
– Multigrid Preconditioning (MGCG)
– IC(0) for Smoothing Operator (Smoother): good for ill-

conditioned problems
• Parallel Geometric Multigrid Method

– 8 fine meshes (children) form 1 coarse mesh (parent) in 
isotropic manner (octree)

– V-cycle
– Domain-Decomposition-based: Localized Block-Jacobi, 

Overlapped Additive Schwartz Domain Decomposition (ASDD)
– Operations using a single core at the coarsest level (redundant)

Linear Solvers
ISS-2013
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Overlapped Additive Schwartz 
Domain Decomposition Method
ASDD: Localized Block-Jacobi Precond. is stabilized

Global Operation


Local Operation
 

Global Nesting Correction
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Computations on Fujitsu FX10
• Fujitsu PRIMEHPC FX10 at U.Tokyo (Oakleaf-FX)

– 16 cores/node, flat/uniform access to memory
• Up to 4,096 nodes (65,536 cores) (Large-Scale HPC 

Challenge) 
– Max 17,179,869,184 unknowns
– Flat MPI, HB 4x4, HB 8x2, HB 16x1

• HB MxN: M-threads x N-MPI-processes on each node

• Weak Scaling
– 643 cells/core

• Strong Scaling
– 1283×8= 16,777,216 unknowns, from 8 to 4,096 nodes

• Network Topology is not specified
– 1D
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HB  M x N

Number of OpenMP threads 
per a single MPI process
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• Krylov Iterative Solvers
– Dot Products
– SMVP
– DAXPY
– Preconditioning

• IC/ILU Factorization, Forward/Backward Substitution
– Global Data Dependency
– Reordering needed for parallelism ([KN 2003] on the Earth 

Simulator, KN@CMCIM-2002)
– Multicoloring, RCM, CM-RCM

Reordering for extracting parallelism
in each domain (= MPI Process)
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Parallerization of ICCG

do i= 1, N
VAL= D(i)
do k= indexL(i-1)+1, indexL(i)
VAL= VAL - (AL(k)**2) * W(itemL(k),DD)

enddo
W(i,DD)= 1.d0/VAL

enddo

do i= 1, N
WVAL= W(i,Z)
do k= indexL(i-1)+1, indexL(i)
WVAL= WVAL - AL(k) * W(itemL(k),Z)

enddo
W(i,Z)= WVAL * W(i,DD)

enddo

IC 
Factorization

Forward
Substitution
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(Global) Data Dependency: 
Writing/reading may occur simultaneously, hard to parallelize

do i= 1, N
VAL= D(i)
do k= indexL(i-1)+1, indexL(i)
VAL= VAL - (AL(k)**2) * W(itemL(k),DD)

enddo
W(i,DD)= 1.d0/VAL

enddo

do i= 1, N
WVAL= W(i,Z)
do k= indexL(i-1)+1, indexL(i)
WVAL= WVAL - AL(k) * W(itemL(k),Z)

enddo
W(i,Z)= WVAL * W(i,DD)

enddo

IC 
Factorization

Forward
Substitution
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OpenMP for SpMV: Straightforward
NO data dependency

!$omp parallel do private(ip,i,VAL,k)
do ip= 1, PEsmpTOT

do i = INDEX(ip-1)+1, INDEX(ip)
VAL= D(i)*W(i,P)
do k= indexL(i-1)+1, indexL(i)
VAL= VAL + AL(k)*W(itemL(k),P)

enddo
do k= indexU(i-1)+1, indexU(i)
VAL= VAL + AU(k)*W(itemU(k),P)

enddo
W(i,Q)= VAL

enddo
enddo



Ordering Methods
Elements in “same color” are independent: to be parallelized
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• Storage format of coefficient matrices
– CRS (Compressed Row Storage): Original
– ELL (Ellpack-Itpack)

• Coarse Grid Aggregation (CGA)
• Hierarchical CGA: Communication Reducing CGA

What is new in this work ?
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ELL: Fixed Loop-length, Nice for 
Pre-fetching 
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Special Treatment for “Boundary” Cells
connected to “Halo”

• Distribution of 
Lower/Upper Non-Zero 
Off-Diagonal Components

• Pure Internal Cells
– L: ~3, U: ~3

• Boundary Cells
– L: ~3, U: ~6
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External Cells

Internal Cells 
on Boundary

Pure Internal 
Cells

x

y
z

Pure Internal Cells Internal Cells 
on Boundary

● Internal 
(lower)

● Internal 
(upper)

● External 
(upper)



Effect of CRS/ELL
4 nodes, 64 cores, (16,777,216 meshes: 643 meshes/core)

CM-RCM(k), only RCM for ELL cases
DOWN is GOOD
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sec./iteration time for MGCG

Down is good



Analyses by Detailed Profiler of 
Fujitsu FX10, single node, Flat MPI, 

RCM (Multigrid Part)
ELL with fixed loop length: accel. prefetching

ISS-2013 54

L1-cache 
Demand Miss Instructions Time for

Multigrid
Operation 

Wait

CRS 29.3% 1.4471010 6.815 sec. 1.453 sec.

ELL 16.5% 6.385109 5.457 sec. 0.312 sec.



Original Approach (restriction)
Coarse grid solver at a single core [KN 2010]
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Level=1

Level=2

Level=m-3

Level=m-2

Level=m-1

Level=m
Mesh # for
each MPI= 1 

Fine

Coarse Coarse grid solver on a 
single core (further multigrid)
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Coarse Grid Solver on a Single Core
ISS-2013

PE#0

PE#1

PE#2

PE#3 Size of the Coarsest Grid=
Number of MPI Processes
Redundant Process

In Flat-MPI, 
this size is largerlev=1 lev=2 lev=3 lev=4

Original 
Approach



Original Approach (restriction)
Coarse grid solver at a single core [KN 2010]
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Level=1

Level=2

Level=m-3

Level=m-2

Level=m-1

Level=m
Mesh # for
each MPI= 1 

Fine

Coarse Coarse grid solver on a 
single core (further multigrid)

Communication Overhead
at Coarser Levels



Coarse Grid Aggregation (CGA)
Coarse Grid Solver is multithreaded [KN 2012]
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Level=1

Level=2

Level=m-3

Fine

Coarse

Coarse grid solver on a 
single MPI process (multi-
threaded, further multigrid)

• Communication overhead could 
be reduced 

• Coarse grid solver is more 
expensive than original approach.

• If process number is larger, this 
effect might be significant

Level=m-2



Results at 4,096 nodes
lev: switching level to “coarse grid solver”
Opt. Level= 7, HB 8x8 is the best
DOWN is GOOD

HB 8x2 HB 16x1

■ Parallel
■ Serial/Redundant

Fine

Coarse

Down is good
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ELL: 65 CRS: 66
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Switching Level for Coarse Grid Solver

Rest
Coarse Grid Solver
MPI_Allgather
MPI_Isend/Irecv/Allreduce
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Weak Scaling at 4,096 nodes
17,179,869,184 meshes (643 meshes/core)

best switching level (=7)

Down is good
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Weak Scaling: up to 4,096 nodes
up to 17,179,869,184 meshes (643 meshes/core)

Convergence has been much improved by coarse grid 
aggregation, DOWN is GOOD

ISS-2013

Iterations sec.

Down is good

7.0

8.0

9.0

10.0

11.0

12.0
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100 1000 10000 100000

se
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CORE#

HB 8x2: CRS
HB 8x2: ELL
HB 8x2: ELL-CGA



Strong Scaling at 4,096 nodes
268,435,456 meshes, only 163 meshes/core at 4,096 nodes

 Flat MPI HB 44 HB 82 HB 161 
 CRS ELL CRS ELL-CGA CRS ELL-CGA CRS ELL-CGA 

Iterations until Convergence 57 58 58 46 63 49 63 51 
MGCG solver (sec.) 5.73 4.07 1.38 .816 1.13 .749 1.00 .714 
Parallel performance (%) 2.02 2.85 8.38 14.2 10.3 15.5 11.6 16.2 

Down is good

Flat MPI/ELL, 8 nodes 
(128 cores) is 100%
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Hierarchical CGA: Comm. Reducing MG
Reduced number of MPI processes[KN 2013]
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Level=1

Level=2

Level=m-3

Level=m-3

Fine

Coarse

Level=m-2

Coarse grid solver at a 
single MPI process (multi-
threaded, further multigrid)
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Results at 4,096 nodes
lev: switching level to “coarse grid solver”
Opt. Level= 7, HB 8x8 is the best
DOWN is GOOD

HB 8x2 HB 16x1

■ Parallel
■ Serial/Redundant

Fine

Coarse

Down is good

hCGA
128 nodes

hCGA
512 nodes
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Summary
• ELL format is effective !
• “Coarse Grid Aggregation (CGA)” is effective for 

stabilization of convergence at O(104) cores for MGCG
– HB 8x2 is the best at 4,096 nodes

• Hierarchical CGA (hCGA) is also effective at 4,096 nodes
• Future/On-Going Works and Open Problems

– Algorithms
• CA-Multigrid (for coarser levels), CA-SPAI

– Strategy for Automatic Selection 
• optimum switching level, number of processes for hCGA, optimum color #

– More Flexible ELL for Unstructured Grids
– Optimized MPI (co-design)

• e.g. MPI on Fujitsu FX10 utilizing RDMA with persistent communications
– Optimum number of colors

• strongly depends on thread #, H/W etc ...
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