Local Matrix

We really need these parts:

pFEM3D-2

MAT_ASS_MAIN: Overview

```
do kpn= 1, 2 Gaussian Quad. points in \zeta-direction
  do jpn= 1, 2 Gaussian Quad. points in \eta-direction
    do ipn= 1, 2 Gaussian Quad. Pointe in ξ-direction
      Define Shape Function at Gaussian Quad. Points (8-points)
      Its derivative on natural/local coordinate is also defined.
    enddo
  enddo
enddo
do icel= 1, ICELTOT Loop for Element
  Jacobian and derivative on global coordinate of shape functions at
  Gaussian Quad. Points are defined according to coordinates of 8 nodes. (JACOBI)
  do ie= 1, 8 Local Node ID do je= 1, 8 Local Node ID
       Global Node ID: ip, jp
       Address of A<sub>ip.ip</sub> in "item": kk
       do kpn= 1, 2 Gaussian Quad. points in \zeta-direction
         do jpn= 1, 2 Gaussian Quad. points in η-direction
           do ipn= 1, 2 Gaussian Quad. points in \xi-direction i_e
              integration on each element
             coefficients of element matrices
             accumulation to global matrix
           enddo
         enddo
       enddo
    enddo
  enddo
enddo
```

pFEM3D-2

MAT_ASS_MAIN visits all elements

including overlapped elements with external nodes

Therefore, we have this matrix

FEM3D 6

But components of this part are not complete, and not used in computation

