Introduction to FEM

Kengo Nakajima Information Technology Center

Programming for Parallel Computing (616-2057) Seminar on Advanced Computing (616-4009)

FDM and FEM

- Numerical Method for solving PDE's
 - Space is discretized into small pieces (elements, meshes)
- Finite Difference Method (FDM)
 - Differential derivatives are directly approximated using Taylor Series Expansion.
- Finite Element Method (FEM)
 - Solving "weak form" derived from integral equations.
 - "Weak solutions" are obtained.
 - Method of Weighted Residual (MWR), Variational Method
 - Suitable for Complicated Geometries
 - Although FDM can handle complicated geometries ...

Finite Difference Method (FDM) Taylor Series Expansion

2nd-Order Central Difference

$$\phi_{i+1} = \phi_i + \Delta x \left(\frac{\partial \phi}{\partial x}\right)_i + \frac{(\Delta x)^2}{2!} \left(\frac{\partial^2 \phi}{\partial x^2}\right)_i + \frac{(\Delta x)^3}{3!} \left(\frac{\partial^3 \phi}{\partial x^3}\right)_i \dots$$

$$\phi_{i-1} = \phi_i - \Delta x \left(\frac{\partial \phi}{\partial x}\right)_i + \frac{(\Delta x)^2}{2!} \left(\frac{\partial^2 \phi}{\partial x^2}\right)_i - \frac{(\Delta x)^3}{3!} \left(\frac{\partial^3 \phi}{\partial x^3}\right)_i \dots$$

$$\frac{\phi_{i+1} - \phi_{i-1}}{2\Delta x} = \left(\frac{\partial \phi}{\partial x}\right)_i + \frac{2 \times (\Delta x)^2}{3!} \left(\frac{\partial^3 \phi}{\partial x^3}\right)_i \dots$$

1D Heat Conduction

• 2nd-Order Central Difference

$$\left(\frac{d^2\phi}{dx^2}\right)_i \approx \frac{\left(\frac{d\phi}{dx}\right)_{i+1/2} - \left(\frac{d\phi}{dx}\right)_{i-1/2}}{\Delta x} = \frac{\frac{\phi_{i+1} - \phi_i}{\Delta x} - \frac{\phi_i - \phi_{i-1}}{\Delta x}}{\Delta x} = \frac{\phi_{i+1} - 2\phi_i + \phi_{i-1}}{\Delta x^2}$$

• Linear Equation at Each Grid Point

$$\frac{d^{2}\phi}{dx^{2}} + BF = 0 \longrightarrow \frac{\frac{\phi_{i+1} - 2\phi_{i} + \phi_{i-1}}{\Delta x^{2}} + BF(i) = 0 \quad (1 \le i \le N)}{\frac{1}{\Delta x^{2}}\phi_{i+1} - \frac{2}{\Delta x^{2}}\phi_{i} + \frac{1}{\Delta x^{2}}\phi_{i-1} + BF(i) = 0 \quad (1 \le i \le N)}{A_{L}(i) \times \phi_{i-1} + A_{D}(i) \times \phi_{i} + A_{R}(i) \times \phi_{i+1} = BF(i) \quad (1 \le i \le N)}{A_{L}(i) = \frac{1}{\Delta x^{2}}, A_{D}(i) = -\frac{2}{\Delta x^{2}}, A_{R}(i) = \frac{1}{\Delta x^{2}}}$$

FDM can handle complicated geometries: BFC Handbook of Grid Generation

History of FEM

- In 1950's, FEM was originally developed as a method for structure analysis of wings of airplanes under collaboration between Boeing and University of Washington (M.J. Turner, H.C. Martin etc.).
 - "Beam Theory" cannot be applied to sweptback wings for airplanes with jet engines.
- Extended to Various Applications
 - Non-Linear: T.J.Oden
 - Non-Structure Mechanics: O.C.Zienkiewicz
- Commercial Package
 - NASTRAN
 - Originally developed by NASA
 - Commercial Version by MSC
 - PC version is widely used in industries

Recent Research Topics

- Non-Linear Problems
 - Crash, Contact, Non-Linear Material
 - Discontinuous Approach
 - X-FEM
- Parallel Computing
 - also in commercial codes
- Adaptive Mesh Refinement (AMR)
 - Shock Wave, Separation
 - Stress Concentration
 - Dynamic Load Balancing (DLB) at Parallel Computing
- Mesh Generation
 - Large-Scale Parallel Mesh Generation

 Numerical Method for PDE (Method of Weighted Residual) 8

- Gauss-Green's Theorem
- Numerical Method for PDE (Variational Method)

Approximation Method for PDE Partial Differential Equations: 偏微分方程式

• Consider solving the following differential equation (boundary value problem), domain *V*, boundary *S* :

L(u) = f

• u (solution of the equation) can be approximated by function u_M (linear combination)

$$u_M = \sum_{i=1}^M a_i \Psi_i \qquad \qquad \Psi_i$$

Trial/Test Function (試行関数) (known function of position, defined in domain and at boundary. "Basis" in linear algebra.

$$a_i$$
 Coefficients (unknown)

Method of Weighted Residual MWR: 重み付き残差法

• u_M is exact solution of u if R (residual : 残差)= 0:

 $R = L(u_M) - f$

In MWR, consider the condition where the following integration of *R* multiplied by *w* (weight/weighting function:重み関数) over entire domain is 0

$$\int_{V} w R(u_M) \, dV = 0$$

• MWR provides "smoothed" approximate solution, which satisfies *R*=0 in the domain *V*

Variational Method (Ritz) (1/2) 変分法

- It is widely known that exact solution *u* provides extreme values (max/min) of "functional: 汎関数" *I(u)*
 - Euler equation: differential equation satisfied by *u*, if functional has extreme values (極値)
 - Euler equation is satisfied, if u provides extreme values of I(u).
 - provide extreme values : 停留させる(or stationarize)
- For example, functional, which corresponds to governing equations of linear elasticity (principle of virtual work, equilibrium equations), is "principle of minimum potential energy (principle of minimum strain energy)".

Variational Method (Ritz) (2/2) 変分法

• Substitute the following approx. solution into I(u), and calculate coefficients a_i under the condition where $I_M = I(u_M)$ provides extreme values, then u_M is obtained:

$$u_M = \sum_{i=1}^M a_i \Psi_i$$

- Variational method is theoretical method, and can be only applied to differential equations, which has equivalent variational problem.
 - In this class, we mainly use MWR
 - Brief overview of Ritz method will given later today.

Finite Element Method (FEM) 有限要素法

 Entire region is discretized into fine elements (要素), and the following approximation is applied to each element:

$$u_M = \sum_{i=1}^M a_i \Psi_i$$

- MWR or Variational Method is applied to each element
- Each element matrix is accumulated to global matrix, and solution of obtained linear equations provides approx. solution of PDE.
- Details of FEM will be provided after next week

Example of MWR (1/3)

• Thermal Equation

$$\lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + Q = 0$$
 in V

 λ : Conductivity, Q: Heat Gen./Volume

T = 0 at boundary S

- Approximate Solution $T = \sum_{j=1}^{n} a_{j} \Psi_{j}$
- Residual

$$R(a_j, x, y) = \lambda \sum_{j=1}^n a_j \left(\frac{\partial^2 \Psi_j}{\partial x^2} + \frac{\partial^2 \Psi_j}{\partial y^2} \right) + Q$$

Example of MWR (2/3)

• Multiply weighting function w_i , and apply integration over *V*:

$$\int_{V} w_i R \, dV = 0$$

- If a set of weighting function w_i is a set of n different functions, the above integration provides a set of n linear equations:
 - # trial/test functions = # weighting functions

$$\sum_{j=1}^{n} a_{j} \int_{V} w_{i} \lambda \left(\frac{\partial^{2} \Psi_{j}}{\partial x^{2}} + \frac{\partial^{2} \Psi_{j}}{\partial y^{2}} \right) dV = -\int_{V} w_{i} Q \, dV \quad (i = 1, ..., n)$$

Example of MWR (3/3)

• Matrix form of the equations is described as follows:

$$[B]\{a\} = \{Q\}$$
$$B_{ij} = \int_{V} w_i \,\lambda \left(\frac{\partial^2 \Psi_j}{\partial x^2} + \frac{\partial^2 \Psi_j}{\partial y^2}\right) dV, \quad Q_i = -\int_{V} w_i \,Q \,dV$$

Actual approach is slightly different from this (more detailed discussions after next week)

Various types of MWR's

- Various types of weighting functions
- Collocation Method
- Least Square Method
- Galerkin Method

選点法
最小自乗法
ガラーキン法

c()

Collocation Method

• Weighting function: Dirac's Delta Function δ

$$\delta(z) = \infty \quad if \quad z = 0$$

$$\delta(z) = 0 \quad if \quad z \neq 0, \quad \int_{-\infty}^{+\infty} \delta(z) \, dz = 1$$

$$w_i = \delta(\mathbf{x} - \mathbf{x}_i) \quad \mathbf{x} : \text{location}$$

 $\mathbf{\Omega}$

• In collocation method, *R* (residual) is set to 0 at *n* collocation points by feature of Dirac's Delta Fn. δ :

$$\int_{V} R\,\delta(\mathbf{x}-\mathbf{x}_{i})\,dV = R|_{\mathbf{x}=\mathbf{x}_{i}}$$

• •

• If *n* increases, *R* approaches to 0 over entire domain.

Least Square Method

• Weighting function:

$$w_i = \frac{\partial R}{\partial a_i}$$

• Minimize the following integration according to *a_i* (unknowns):

$$I(a_i) = \int_{V} [R(a_i, \mathbf{x})]^2 dV$$

$$\frac{\partial}{\partial a_i} [I(a_i)] = 2 \int_{V} \left[R(a_i, \mathbf{x}) \frac{\partial R(a_i, \mathbf{x})}{\partial a_i} \right] dV = 0$$

$$\int_{V} \left[R(a_i, \mathbf{x}) \frac{\partial R(a_i, \mathbf{x})}{\partial a_i} \right] dV = 0$$

Galerkin Method

• Weighting Function = Test/Trial Function:

 $W_i = \Psi_i$

- Galerkin, Boris Grigorievich
 - 1871-1945
 - Engineer and Mathematician of Russia
 - He got a hint for Galerkin Method while he was imprisoned because of anticzarism (1906-1907).

Example (1/2)

• Governing Equation

$$\frac{d^{2}u}{dx^{2}} + u + x = 0 \quad (0 \le x \le 1)$$

• Boundary Conditions: Dirichlet

$$u = 0 @ x = 0$$

 $u = 0 @ x = 1$

• Exact Solution

$$u = \frac{\sin x}{\sin 1} - x$$

Exact Solution
$$u = \frac{\sin x}{\sin 1} - x$$

X

Example (2/2)

• Assume the following approx. solution:

$$u = x(1-x)(a_1 + a_2 x) = x(1-x)a_1 + x^2(1-x)a_2 = a_1\Psi_1 + a_2\Psi_2$$

$$\Psi_1 = x(1-x), \quad \Psi_2 = x^2(1-x)$$

Test/trial function satisfies $u=0@x=0,1$

• Residual is as follows:

$$R(a_1, a_2, x) = x + (-2 + x - x^2)a_1 + (2 - 6x + x^2 - x^3)a_2$$

- Let's apply various types of MWR to this equation
 - We have two unknowns (a_1, a_2) , therefore we need two independent weighting functions.

Collocation Method

• n=2, x=1/4, x=1/2 for collocation points:

$$R(a_1, a_2, \frac{1}{4}) = 0, \quad R(a_1, a_2, \frac{1}{2}) = 0$$
$$R(a_1, a_2, x) = x + (-2 + x - x^2)a_1 + (2 - 6x + x^2 - x^3)a_2$$

• Solution:

$$\begin{bmatrix} 29/16 & -35/64 \\ 7/4 & 7/8 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1/4 \\ 1/2 \end{bmatrix} \implies a_1 = \frac{6}{31}, \quad a_2 = \frac{40}{217}$$
$$u = \frac{x(1-x)}{217} (42+40x)$$

Least Square Method

• Weighting functions, Residual:

$$w_{1} = \frac{\partial R}{\partial a_{1}} = -2 + x - x^{2}, \quad w_{2} = \frac{\partial R}{\partial a_{2}} = 2 - 6x + x^{2} - x^{3}$$

$$R(a_{1}, a_{2}, x) = x + (-2 + x - x^{2})a_{1} + (2 - 6x + x^{2} - x^{3})a_{2}$$

• Solution:

$$\int_{0}^{1} R(a_{1}, a_{2}, x) \frac{\partial R}{\partial a_{1}} dx = \int_{0}^{1} R(a_{1}, a_{2}, x) (-2 + x - x^{2}) dx = 0$$

$$\int_{0}^{1} R(a_{1}, a_{2}, x) \frac{\partial R}{\partial a_{2}} dx = \int_{0}^{1} R(a_{1}, a_{2}, x) (2 - 6x + x^{2} - x^{3}) dx = 0$$

$$\begin{bmatrix} 202 & 101 \\ 707 & 1572 \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \end{bmatrix} = \begin{bmatrix} 55 \\ 399 \end{bmatrix} \longrightarrow a_{1} = \frac{46161}{246137}, \quad a_{2} = \frac{41713}{246137}$$

$$u = \frac{x(1 - x)}{246137} (46161 + 41713x)$$

Galerkin Method

• Weighting functions, Residual:

$$w_1 = \Psi_1 = x(1-x), \quad w_2 = \Psi_2 = x^2(1-x)$$

 $R(a_1, a_2, x) = x + (-2 + x - x^2)a_1 + (2 - 6x + x^2 - x^3)a_2$

• Results:

$$\int_{0}^{1} R(a_{1}, a_{2}, x) \Psi_{1} dx = \int_{0}^{1} R(a_{1}, a_{2}, x) (x - x^{2}) dx = 0$$
$$\int_{0}^{1} R(a_{1}, a_{2}, x) \Psi_{2} dx = \int_{0}^{1} R(a_{1}, a_{2}, x) (x^{2} - x^{3}) dx = 0$$

$$\begin{bmatrix} 3/10 & 3/20 \\ 3/20 & 13/105 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1/12 \\ 1/20 \end{bmatrix} \implies a_1 = \frac{71}{369}, \quad a_2 = \frac{7}{41}$$

$$u = \frac{x(1-x)}{369}(71+63x)$$

Results

X	Exact	Collocation	Least Square	Galerkin
0.25	0.04401	0.04493	0.04311	0.04408
0.50	0.06975	0.07143	0.06807	0.06944
0.75	0.06006	0.06221	0.05900	0.06009

- Galerkin Method provides the most accurate solution
 - If functional exists, solutions of variational method and Galerkin method agree.
 - A kind of analytical solution (later of this material)
- Many commercial FEM codes use Galerkin method.
- In this class, Galerkin method is used.
- Least-square may provide robust solution in Navier-Stokes solvers for high Re.

Homework (1/2)

- Apply the following two method is the next page to the same equations:
 - Method of Moment
 - Sub-Domain Method
 - Results at x=0.25, 0.50, 0.75
- Compare the results of "collocation method" on "non-collocation points" with exact solution
 - Explain the behavior
 - Try different collocation points

Homework (2/2)

• Method of Moment (モーメント法)

 $w_i = \mathbf{x}^{i-1} \quad (i \ge 1)$

- Weighting functions ?

- Sub-Domain Method (部分領域法)
 - Domain V is divided into subdomains $V_i(i=1-n)$, and weighting functions w_i are given as follows:

 $w_i = \begin{cases} 1 & \text{for points in } V_i \\ 0 & \text{for points out of } V_i \end{cases}$

- Two unknowns, two sub domains

- Numerical Method for PDE (Method of Weighted Residual)
- Gauss-Green's Theorem
- Numerical Method for PDE (Variational Method)

Gauss's Theorem

$$\int_{V} \left(\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial W}{\partial z} \right) dV = \int_{S} \left(Un_{x} + Vn_{y} + Wn_{z} \right) dS$$

- 3D (x,y,z)
- Domain *V* surrounded by smooth closed surface *S*

• Outward normal vector *n* on surface *S*:

 $-n_x$, n_y , n_z : direction cosine

Proof of Gauss's Theorem (1/3)

Infinitesimal prism which is parallel with x-axis:

$$\int_{\Delta V} \frac{\partial U}{\partial x} dV = \iint dy \, dz \int_{x_1}^{x_2} \frac{\partial U}{\partial x} \, dx$$
$$= \iint U(x_2, y, z) \, dy \, dz - \iint U(x_1, y, z) \, dy \, dz$$

Proof of Gauss's Theorem (2/3)

• Infinitesimal surface dS :

 $dy dz = +n_x dS \quad (if \ n_x \ge 0)$ $dy dz = -n_x dS \quad (if \ n_x \le 0)$

 ΔV \mathbf{X}_1 X_2 Х dS n $\mathbf{n} = \left(n_x, n_y, n_z\right)$

• thus:

$$\int_{\Delta V} \frac{\partial U}{\partial x} dV = \iint dy \, dz \int_{x_1}^{x_2} \frac{\partial U}{\partial x} \, dx$$

=
$$\iint U(x_2, y, z) \, dy \, dz - \iint U(x_1, y, z) \, dy \, dz$$

=
$$\int_{\Delta S_1} U n_x \, dS + \int_{\Delta S_2} U n_x \, dS$$

Proof of Gauss's Theorem (3/3)

• Integration over the entire surface:

$$\int_{V} \frac{\partial U}{\partial x} \, dV = \int_{S} U n_x \, dS$$

• Extension to y-, and z- direction:

$$\int_{V} \left(\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial W}{\partial z} \right) dV = \int_{S} \left(Un_{x} + Vn_{y} + Wn_{z} \right) dS \qquad n$$
$$\mathbf{n} = \left(n_{x}, n_{y}, n_{z} \right)$$

dS

Green's Theorem (1/2)

• Assume the following functions:

$$U = A \frac{\partial B}{\partial x}, \quad V = A \frac{\partial B}{\partial y}, \quad W = A \frac{\partial B}{\partial z}$$

• Thus :

$$\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial W}{\partial z} = A \left(\frac{\partial^2 B}{\partial x^2} + \frac{\partial^2 B}{\partial y^2} + \frac{\partial^2 B}{\partial z^2} \right) + \left(\frac{\partial A}{\partial x} \frac{\partial B}{\partial x} + \frac{\partial A}{\partial y} \frac{\partial B}{\partial y} + \frac{\partial A}{\partial z} \frac{\partial B}{\partial z} \right)$$

• Apply Gauss's theorem:

$$\int_{V} A \left(\frac{\partial^{2} B}{\partial x^{2}} + \frac{\partial^{2} B}{\partial y^{2}} + \frac{\partial^{2} B}{\partial z^{2}} \right) dV + \int_{V} \left(\frac{\partial A}{\partial x} \frac{\partial B}{\partial x} + \frac{\partial A}{\partial y} \frac{\partial B}{\partial y} + \frac{\partial A}{\partial z} \frac{\partial B}{\partial z} \right) dV$$
$$= \int_{S} \left(Un_{x} + Vn_{y} + Wn_{z} \right) dS = \int_{S} A \left(\frac{\partial B}{\partial x} n_{x} + \frac{\partial B}{\partial y} n_{y} + \frac{\partial B}{\partial z} n_{z} \right) dS$$

Green's Theorem (2/2)

• (cont.)

$$\int_{S} A\left(\frac{\partial B}{\partial x}n_{x} + \frac{\partial B}{\partial y}n_{y} + \frac{\partial B}{\partial z}n_{z}\right) dS = \int_{S} A\left(\frac{\partial B}{\partial x}\frac{\partial x}{\partial n} + \frac{\partial B}{\partial y}\frac{\partial y}{\partial n} + \frac{\partial B}{\partial z}\frac{\partial z}{\partial n}\right) dS$$
$$= \int_{S} A\frac{\partial B}{\partial n} dS \qquad \frac{\partial B}{\partial n} \text{ Gradient of } B \text{ to the direction of normal vector}$$

• Finally:

$$\int_{V} A\left(\frac{\partial^{2} B}{\partial x^{2}} + \frac{\partial^{2} B}{\partial y^{2}} + \frac{\partial^{2} B}{\partial z^{2}}\right) dV = \int_{S} A\frac{\partial B}{\partial n} dS - \int_{V} \left(\frac{\partial A}{\partial x}\frac{\partial B}{\partial x} + \frac{\partial A}{\partial y}\frac{\partial B}{\partial y} + \frac{\partial A}{\partial z}\frac{\partial B}{\partial z}\right) dV$$

- Appears often after next week
 - From 2nd order differentiation to 1st order differentiation.

In Vector Form

• Gauss's Theorem

$$\int_{V} \nabla \cdot \mathbf{w} \, dV = \int_{S} \mathbf{w}^{T} \mathbf{n} \, dS$$

• Green's Theorem

$$\int_{V} v\Delta u \, dV = \int_{S} \left(v\nabla u \right)^{T} \mathbf{n} \, dS - \int_{V} \left(\nabla^{T} v \right) \left(\nabla u \right) dV$$

- Numerical Method for PDE (Method of Weighted Residual)
- Gauss-Green's Theorem
- Numerical Method for PDE (Variational Method)

Variational Method (Ritz) (1/2) 変分法

- It is widely known that exact solution *u* provides extreme values (max/min) of "functional: 汎関数" *I(u)*
 - Euler equation: differential equation satisfied by *u*, if functional has extreme values (極値)
 - Euler equation is satisfied, if u provides extreme values of I(u).
 - provide extreme values : 停留させる(or stationarize)
- For example, functional, which corresponds to governing equations of linear elasticity (principle of virtual work, equilibrium equations), is "principle of minimum potential energy (principle of minimum strain energy)".

Variational Method (Ritz) (2/2) 変分法

• Substitute the following approx. solution into I(u), and calculate coefficients a_i under the condition where $I_M = I(u_M)$ provides extreme values, then u_M is obtained:

$$u_M = \sum_{i=1}^M a_i \Psi_i$$

- Variational method is theoretical method, and can be only applied to differential equations, which has equivalent variational problem.
 - In this class, we mainly use MWR
 - Brief overview of Ritz method will given later today.

FEM-intro

Application of Variational Method (1/5)

• Consider the following integration *I*(*u*) in 2D-domain *V*, where *u*(*x*,*y*) is unknown function of *x* and *y*:

$$I(u) = \int_{V} \frac{1}{2} \left\{ \left(\frac{\partial u}{\partial x} \right)^{2} + \left(\frac{\partial u}{\partial y} \right)^{2} - 2Qu \right\} dV$$

Q: known value
 $u = 0$ at boundary S

- I(u) is "functional (汎関数)" of function u
- *u** is a twice continuously differentiable function and minimizes *I*(*u*). *η* is an arbitrary function which satisfies *η*=0 at boundary *S*, and α is a parameter. Consider the following equation:

 $u(x, y) = u^*(x, y) + \alpha \cdot \eta(x, y)$

V

S

Application of Variational Method (2/5)

- At this stage, the following condition is necessary: $I(u) \ge I(u^*)$
- Assume that functional $I(u^* + \alpha \eta)$ is a function of α . Functional *I* provides minimum value, if $\alpha = 0$. Therefore, the following equation is obtained:

$$\frac{\partial}{\partial \alpha} I \left(u^* + \alpha \cdot \eta \right)_{\alpha = 0} = 0$$

• According to the definition of functional *I*(*u*), following equation is obtained

$$\int_{V} \left(\frac{\partial u^{*}}{\partial x} \frac{\partial \eta}{\partial x} + \frac{\partial u^{*}}{\partial y} \frac{\partial \eta}{\partial y} - Q \eta \right) dV = 0$$

FEM-intro

$$I(u) = \int_{V} \frac{1}{2} \left\{ \left(\frac{\partial u}{\partial x} \right)^{2} + \left(\frac{\partial u}{\partial y} \right)^{2} - 2Qu \right\} dV$$
$$u(x, y) = u^{*}(x, y) + \alpha \cdot \eta(x, y)$$
$$\frac{\partial}{\partial \alpha} I(u^{*} + \alpha \cdot \eta) \bigg|_{\alpha = 0} = 0$$

$$\frac{\partial}{\partial \alpha} \left\{ \frac{1}{2} \left(\frac{\partial u}{\partial x} \right)^2 \right\} = \frac{\partial u}{\partial x} \cdot \frac{\partial}{\partial \alpha} \left(\frac{\partial u}{\partial x} \right), \quad \frac{\partial u}{\partial x} = \frac{\partial \left(u^* + \alpha \cdot \eta \right)}{\partial x} = \frac{\partial u^*}{\partial x} + \alpha \frac{\partial \eta}{\partial x}$$
$$\frac{\partial}{\partial \alpha} \left(\frac{\partial u}{\partial x} \right) = \frac{\partial \eta}{\partial x}, \quad \alpha = 0 \Rightarrow \frac{\partial}{\partial \alpha} \left\{ \frac{1}{2} \left(\frac{\partial u}{\partial x} \right)^2 \right\} = \frac{\partial u^*}{\partial x} \frac{\partial \eta}{\partial x}, \quad \frac{\partial}{\partial \alpha} \left\{ \frac{1}{2} \left(\frac{\partial u}{\partial y} \right)^2 \right\} = \frac{\partial u^*}{\partial y} \frac{\partial \eta}{\partial y}$$
$$\frac{\partial}{\partial \alpha} \left(Qu \right) = Q \frac{\partial \left(u^* + \alpha \cdot \eta \right)}{\partial \alpha} = Q \eta$$
$$\int_{V} \left(\frac{\partial u^*}{\partial x} \frac{\partial \eta}{\partial x} + \frac{\partial u^*}{\partial y} \frac{\partial \eta}{\partial y} - Q \eta \right) dV = 0$$

FEM-intro

Application of Variational Method (3/5)

• Apply Green's theorem on 1st and 2nd term of LHS, and apply integration by parts, then following equation is obtained: $(A = \eta, B = u^*)$:

$$-\int_{V} \left(\frac{\partial^{2} u^{*}}{\partial x^{2}} + \frac{\partial^{2} u^{*}}{\partial y^{2}} + Q \right) \eta \, dV + \int_{S} \eta \frac{\partial u^{*}}{\partial n} \, dS = 0$$

where $\frac{\partial u^{*}}{\partial n} = \frac{\partial u^{*}}{\partial x} n_{x} + \frac{\partial u^{*}}{\partial y} n_{y}$ Gradient of u^{*} in the direction of normal vector

• At boundary *S*, $\eta=0$:

$$-\int_{V} \left(\frac{\partial^2 u^*}{\partial x^2} + \frac{\partial^2 u^*}{\partial y^2} + Q \right) \eta \, dV = 0$$

• (A) is required, if the above is true for arbitrary η

$$\frac{\partial^2 u^*}{\partial x^2} + \frac{\partial^2 u^*}{\partial y^2} + Q = 0 \quad (A)$$

Green's Theorem

•
$$(A=\eta, B=u^*)$$
 :

$$\int_{V} \left(\frac{\partial u^{*}}{\partial x} \frac{\partial \eta}{\partial x} + \frac{\partial u^{*}}{\partial y} \frac{\partial \eta}{\partial y} - Q \eta \right) dV = 0$$

$$\int_{V} \eta \left(\frac{\partial^{2} u^{*}}{\partial x^{2}} + \frac{\partial^{2} u^{*}}{\partial y^{2}} \right) dV = \int_{S} \eta \frac{\partial u^{*}}{\partial n} dS - \int_{V} \left(\frac{\partial \eta}{\partial x} \frac{\partial u^{*}}{\partial x} + \frac{\partial \eta}{\partial y} \frac{\partial u^{*}}{\partial y} \right) dV$$
$$\int_{V} \left(\frac{\partial \eta}{\partial x} \frac{\partial u^{*}}{\partial x} + \frac{\partial \eta}{\partial y} \frac{\partial u^{*}}{\partial y} \right) dV \int_{V} = -\eta \left(\frac{\partial^{2} u^{*}}{\partial x^{2}} + \frac{\partial^{2} u^{*}}{\partial y^{2}} \right) dV + \int_{S} \eta \frac{\partial u^{*}}{\partial n} dS$$

Application of Variational Method (4/5)

- Equation (A) is called "Euler equation"
 - Necessary condition of u^* , which minimizes functional I(u), is that u^* satisfies the Euler equation.
- Sufficient condition:
 - Assume that u^* is solution of the Euler equation and $\alpha \eta = \delta u^*$

Application of Variational Method (5/5)

• It has been proved that u^* (solution of Euler equation) minimizes functional I(u).

 $I(u^* + \delta u^*) \ge I(u^*)$

- Therefore, boundary value problem by Euler equation
 (A) with B.C. (u=0) is equivalent to variational problem.
 - Solving equivalent variational problem provides solution of Euler equation (Poission equation in this case)
 - Functional must exist !

Approx. by Variational Method (1/4)

Functional

$$I(u) = \int_{0}^{1} \left\{ \frac{1}{2} \left(\frac{du}{dx} \right)^{2} - \frac{1}{2} u^{2} - xu \right\} dx$$

Boundary Condition

$$u = 0 @ x = 0$$

- u = 0 @ x = 1
- Obtain *u*, which "stationalizes" functional *I*(*u*) under this B.C.
 - Corresponding Euler equation is as follows (same as equation in p.21):

$$\frac{d^2 u}{dx^2} + u + x = 0 \quad (0 \le x \le 1)$$
 (B-1)

Approx. by Variational Method (2/4)

• Assume the following test function with *n*-th order for function *u*, which is twice continuously differentiable:

$$u_n = x \cdot (1 - x) \cdot (a_1 + a_2 x + a_3 x^2 + \dots + a_n x^{n-1})$$
 (B-2)

 If we increase the order of test function, u_n is closer to exact solution u. Therefore, functional I(u) can be approximated by I(u_n):

- If $I(u_n)$ stationarizes, I(u) also stationarizes.

• We need to obtain set of unknown coefficients a_k , which satisfies the following stationary condition:

$$\frac{\partial I(u_n)}{\partial a_k} = 0 \quad (k = 1 \sim n) \tag{B-3}$$

Ritz Method

- Equation (B-3) is linear equations for a_1 - a_n .
- If this solutions is applied to equation (B-2), approximate solution, which satisfies Euler equation (B-1), is obtained.
 - Approximate solution, but satisfies Euler equation strictly (厳密解)
- This type of method using a set of coefficients a_1 - a_n is called "Ritz Method".

Approx. by Variational Method (3/4)

• Ritz Method, *n*=2

 $u_{2} = x \cdot (1-x) \cdot (a_{1} + a_{2}x) = x \cdot (1-x) \cdot a_{1} + x^{2} \cdot (1-x) \cdot a_{2}$

$$\frac{\partial I(u_2)}{\partial a_1} = 0 \Rightarrow \left[\int_0^1 (1 - x - x^2) (1 - 3x + x^2) dx \right] a_1 + \left[\int_0^1 \left\{ (1 - 2x) (2x - 3x^2) - x^3 (1 - x)^2 \right\} dx \right] a_2 + \int_0^1 x^2 (1 - x) dx = 0 \frac{\partial I(u_2)}{\partial a_2} = 0 \Rightarrow \left[\int_0^1 \left\{ (1 - 2x) (2x - 3x^2) - x^3 (1 - x)^2 \right\} dx \right] a_1 + \left[\int_0^1 (2x - 3x^2 + x^3) (2x - 2x^2 - x^3) dx \right] a_2 + \int_0^1 x^3 (1 - x) dx = 0$$

Supplementation for (3/4) (1/3)

• Ritz Method, *n*=2

$$u_{2} = x \cdot (1-x) \cdot (a_{1} + a_{2}x) = x \cdot (1-x) \cdot a_{1} + x^{2} \cdot (1-x) \cdot a_{2}$$
$$I(u) = \int_{0}^{1} \left\{ \frac{1}{2} \left(\frac{du}{dx} \right)^{2} - \frac{1}{2} u^{2} - xu \right\} dx$$

$$\frac{1}{2} \left(\frac{du}{dx} \right)^2 - \frac{1}{2} u^2 - xu = \frac{1}{2} \left[(1 - 2x)a_1 + (2x - 3x^2)a_2 \right]^2 - \frac{1}{2} \left[x \cdot (1 - x) \cdot a_1 + x^2 \cdot (1 - x) \cdot a_2 \right]^2 - \left[x^2 \cdot (1 - x) \cdot a_1 + x^3 \cdot (1 - x) \cdot a_2 \right]$$

Supplementation for (3/4) (2/3)

$$\frac{1}{2} \left(\frac{du}{dx}\right)^2 - \frac{1}{2}u^2 - xu = \frac{1}{2} \left[(1 - 2x)a_1 + (2x - 3x^2)a_2 \right]^2 - \frac{1}{2} \left[x \cdot (1 - x) \cdot a_1 + x^2 \cdot (1 - x) \cdot a_2 \right]^2 - \left[x^2 \cdot (1 - x) \cdot a_1 + x^3 \cdot (1 - x) \cdot a_2 \right]$$

$$\frac{\partial I(u_2)}{\partial a_1} = 0 \Longrightarrow$$

$$\begin{bmatrix} \int_0^1 \left\{ (1 - 2x)^2 - x^2 \cdot (1 - x)^2 \right\} dx \end{bmatrix} a_1$$

$$+ \begin{bmatrix} \int_0^1 \left\{ (1 - 2x)(2x - 3x^2) - x^3 \cdot (1 - x)^2 \right\} dx \end{bmatrix} a_2 - \int_0^1 x^2 \cdot (1 - x) dx = 0$$

Supplementation for (3/4) (3/3)

$$\frac{1}{2} \left(\frac{du}{dx} \right)^2 - \frac{1}{2} u^2 - xu = \frac{1}{2} \left[(1 - 2x)a_1 + (2x - 3x^2)a_2 \right]^2 - \frac{1}{2} \left[x \cdot (1 - x) \cdot a_1 + x^2 \cdot (1 - x) \cdot a_2 \right]^2 - \left[x^2 \cdot (1 - x) \cdot a_1 + x^3 \cdot (1 - x) \cdot a_2 \right]$$

$$\frac{\partial I(u_2)}{\partial a_2} = 0 \Longrightarrow$$

$$\begin{bmatrix} \int_0^1 \left\{ (1 - 2x)(2x - 3x^2) - x^3 \cdot (1 - x)^2 \right\} dx \\ + \begin{bmatrix} \int_0^1 \left\{ (2 - 3x^2)^2 - x^4 \cdot (1 - x)^2 \right\} dx \end{bmatrix} a_2 - \int_0^1 x^3 \cdot (1 - x) dx = 0$$

Approx. by Variational Method (4/4)

• Final linear equations are as follows:

$$\begin{bmatrix} 3/10 & 3/20 \\ 3/20 & 13/105 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1/12 \\ 1/20 \end{bmatrix} \implies a_1 = \frac{71}{369}, \quad a_2 = \frac{7}{41}$$
$$u = \frac{x(1-x)}{369}(71+63x)$$

This result is identical with that of Galerkin Method
 – NOT a coincidence !!

Galerkin Method

 Weighting functions (which satisfy u=0@x=0,1), Residual:

$$w_1 = \Psi_1 = x(1-x), \quad w_2 = \Psi_2 = x^2(1-x)$$
$$R(a_1, a_2, x) = x + (-2 + x - x^2)a_1 + (2 - 6x + x^2 - x^3)a_2$$

• Results:

$$\int_{0}^{1} R(a_{1}, a_{2}, x) \Psi_{1} dx = \int_{0}^{1} R(a_{1}, a_{2}, x) (x - x^{2}) dx = 0$$

$$\int_{0}^{1} R(a_{1}, a_{2}, x) \Psi_{2} dx = \int_{0}^{1} R(a_{1}, a_{2}, x) (x^{2} - x^{3}) dx = 0$$

$$\begin{bmatrix} 3/10 & 3/20 \\ 3/20 & 13/105 \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \end{bmatrix} = \begin{bmatrix} 1/12 \\ 1/20 \end{bmatrix} \longrightarrow a_{1} = \frac{71}{369}, \quad a_{2} = \frac{7}{41}$$

$$u = \frac{x(1 - x)}{369} (71 + 63x)$$

FEM-intro

Ritz Method & Galerkin Method (1/4)

$$\begin{aligned} u_{2} &= x \cdot (1-x) \cdot (a_{1}+a_{2}x) = a_{1}w_{1}+a_{2}w_{2} \\ I(u) &= \int_{0}^{1} \left\{ \frac{1}{2} \left(\frac{du}{dx} \right)^{2} - \frac{1}{2}u^{2} - xu \right] dx & \frac{\partial}{\partial a_{1}} \left[\frac{1}{2} \left(\frac{du_{2}}{dx} \right)^{2} \right] = \frac{du_{2}}{dx} \cdot \frac{\partial}{\partial a_{1}} \left(\frac{du_{2}}{dx} \right) = \left(a_{1} \frac{dw_{1}}{dx} + a_{2} \frac{dw_{2}}{dx} \right) \frac{dw_{1}}{dx} \\ & \frac{\partial}{\partial a_{1}} \left[\frac{1}{2}u_{2}^{2} \right] = \left(u_{2} \right) \cdot \frac{\partial u_{2}}{\partial a_{1}} = (a_{1}w_{1}+a_{2}w_{2}) \cdot w_{1} \\ & \frac{\partial}{\partial a_{1}} \left[\frac{1}{2}u_{2}^{2} \right] = \left(u_{2} \right) \cdot \frac{\partial u_{2}}{\partial a_{1}} = (a_{1}w_{1}+a_{2}w_{2}) \cdot w_{1} \\ & \frac{\partial}{\partial a_{1}} \left[xu_{2} \right] = x \cdot \frac{\partial u_{2}}{\partial a_{1}} = x \cdot w_{1} \\ & \int_{0}^{1} \left\{ \left(\frac{dw_{1}}{dx} \right)^{2}a_{1} + \frac{dw_{1}}{dx} \frac{dw_{2}}{dx}a_{2} \right\} dx \right] - \left[\int_{0}^{1} w_{1} \left\{ (w_{1}a_{1}+w_{2}a_{2}) + x \right\} dx \right] = 0 \\ & \frac{\partial I(u_{2})}{\partial a_{2}} = 0 \Rightarrow \\ & \left[\int_{0}^{1} \left\{ \frac{dw_{1}}{dx} \frac{dw_{2}}{dx}a_{1} + \left(\frac{dw_{2}}{dx} \right)^{2}a_{2} \right\} dx \right] - \left[\int_{0}^{1} w_{2} \left\{ (w_{1}a_{1}+w_{2}a_{2}) + x \right\} dx \right] = 0 \end{aligned}$$

Ritz Method & Galerkin Method (2/4)

$$\frac{\partial I(u_2)}{\partial a_1} = 0 \Rightarrow \begin{bmatrix} \int_0^1 \left\{ \left(\frac{dw_1}{dx} \right)^2 a_1 + \frac{dw_1}{dx} \frac{dw_2}{dx} a_2 \right\} dx \end{bmatrix} - \begin{bmatrix} \int_0^1 w_1 \left\{ (w_1 a_1 + w_2 a_2) + x \right\} dx \end{bmatrix} = 0$$

$$w_1 = \Psi_1 = x(1-x),$$

$$w_2 = \Psi_2 = x^2(1-x)$$

$$\frac{\partial}{\partial x} \left(w_1 \frac{dw_1}{dx} \right) = \frac{dw_1}{dx} \frac{dw_1}{dx} + w_1 \frac{d^2w_1}{dx^2}$$

$$\frac{\partial}{\partial x} \left(w_1 \frac{dw_2}{dx} \right) = \frac{dw_1}{dx} \frac{dw_2}{dx} + w_1 \frac{d^2w_2}{dx^2}$$

$$\int_0^1 \left\{ \left(\frac{dw_1}{dx} \right)^2 a_1 \right\} dx = \left(a_1 w_1 \frac{dw_1}{dx} \right) \Big|_0^1 - \int_0^1 w_1 \left\{ \frac{d^2 w_1}{dx^2} a_1 \right\} dx = -\int_0^1 w_1 \left\{ \frac{d^2 w_1}{dx^2} a_1 \right\} dx$$

$$\int_0^1 \left\{ \left(\frac{dw_1}{dx} \frac{dw_2}{dx} \right) a_2 \right\} dx = \left(a_2 w_1 \frac{dw_2}{dx} \right) \Big|_0^1 - \int_0^1 w_1 \left\{ \frac{d^2 w_2}{dx^2} a_2 \right\} dx = -\int_0^1 w_1 \left\{ \frac{d^2 w_2}{dx^2} a_2 \right\} dx$$

Ritz Method & Galerkin Method (3/4) $\frac{\partial I(u_2)}{\partial a_1} = 0 \Rightarrow \qquad \qquad \frac{d^2 u}{dx^2} + u + x = 0$

$$\int_{0}^{2} a_{1} dx^{2}$$

$$-\int_{0}^{1} w_{1} \left\{ \left(\frac{d^{2} w_{1}}{dx^{2}} a_{1} + \frac{d^{2} w_{2}}{dx^{2}} a_{2} \right) + \left(w_{1} a_{1} + w_{2} a_{2} \right) + x \right\} dx = 0$$

$$u = a_{1} w_{1} + a_{2} w_{2}$$

$$\int_{0}^{1} w_{1} \left(\frac{d^{2} u_{2}}{dx^{2}} + u_{2} + x \right) dx = 0$$
Galerkin Method !!

$$\frac{\partial I(u_2)}{\partial a_2} = 0 \Rightarrow \\ -\int_0^1 w_2 \left\{ \left(\frac{d^2 w_1}{dx^2} a_1 + \frac{d^2 w_2}{dx^2} a_2 \right) + (w_1 a_1 + w_2 a_2) + x \right\} dx = 0 \\ -\int_0^1 w_2 \left(\frac{d^2 u_2}{dx^2} + u_2 + x \right) dx = 0 \right\}$$

Ritz Method & Galerkin Method (4/4)

- This example is a very special case. But, generally speaking, results of Galerkin method and Ritz method agree, if functional exists.
- Although Ritz method provides approx. solution, that satisfies Euler equation in strict sense. Therefore, solution of Ritz method is closer to exact solution.
 - This is the main reason that Galerkin method is accurate.
 - Please just remember this.
- This relationship between Ritz and Galerkin is not correct if functional does not exist.
 - In these cases, Galerkin method is not necessarily the best method from the viewpoint of accuracy and robustness.