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FDM and FEM
• Numerical Method for solving PDE’s

– Space is discretized into small pieces (elements, meshes)
• Finite Difference Method (FDM)

– Differential derivatives are directly approximated using 
Taylor Series Expansion.

• Finite Element Method（FEM）

– Solving “weak form” derived from integral equations.
• “Weak solutions” are obtained.

– Method of Weighted Residual (MWR), Variational Method 
– Suitable for Complicated Geometries

• Although FDM can handle complicated geometries ...
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Finite Difference Method (FDM)
Taylor Series Expansion

x x

i-1 i i+1

   


iii
ii x

x
x

x
x

x 































 3

33

2

22

1 !3!2


   


iii
ii x

x
x

x
x

x 































 3

33

2

22

1 !3!2


2nd-Order Central Difference

 


ii

ii

x
x

xx 






















 

3

32
11

!3
2

2


3FEM-intro



1D Heat Conduction

• Linear Equation at Each Grid Point 
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FDM can handle complicated 
geometries: BFC

Handbook of Grid Generation
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History of FEM
• In 1950’s, FEM was originally developed as a method 

for structure analysis of wings of airplanes under 
collaboration between Boeing and University of 
Washington (M.J. Turner, H.C. Martin etc.).
– “Beam Theory” cannot be applied to sweptback wings for 

airplanes with jet engines.   
• Extended to Various Applications

– Non-Linear: T.J.Oden
– Non-Structure Mechanics: O.C.Zienkiewicz

• Commercial Package
– NASTRAN

• Originally developed by NASA
• Commercial Version by MSC
• PC version is widely used in industries
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Recent Research Topics
• Non-Linear Problems

– Crash, Contact, Non-Linear Material
– Discontinuous Approach

• X-FEM

• Parallel Computing
– also in commercial codes

• Adaptive Mesh Refinement (AMR)
– Shock Wave, Separation
– Stress Concentration
– Dynamic Load Balancing (DLB) at Parallel Computing

• Mesh Generation
– Large-Scale Parallel Mesh Generation
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• Numerical Method for PDE (Method of Weighted 
Residual)

• Gauss-Green’s Theorem
• Numerical Method for PDE (Variational Method)
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Approximation Method for PDE
Partial Differential Equations: 偏微分方程式

• Consider solving the following differential 
equation (boundary value problem), domain V, 
boundary S :

fuL )(

• u (solution of the equation) can be approximated 
by function uM (linear combination)

i

M

i
iM au 

1
i

ia

Trial/Test Function （試行関数）(known 
function of position, defined in domain and 
at boundary. “Basis” in linear algebra.

Coefficients (unknown)
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Method of Weighted Residual 
MWR: 重み付き残差法

• uM is exact solution of u if R (residual：残差)= 0: 

fuLR M  )(

• In MWR, consider the condition where the following 
integration of R multiplied by w (weight/weighting 
function：重み関数) over entire domain is 0

0)( 
V

M dVuRw

• MWR provides “smoothed” approximate solution, 
which satisfies R=0 in the domain V
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Variational Method (Ritz) (1/2)
変分法

• It is widely known that exact solution u provides 
extreme values (max/min) of “functional：汎関数” I(u) 
– Euler equation: differential equation satisfied by u, if 

functional has extreme values（極値）

– Euler equation is satisfied, if u provides extreme values of 
I(u).

– provide extreme values：停留させる（or stationarize）
• For example, functional, which corresponds to 

governing equations of linear elasticity (principle of 
virtual work, equilibrium equations), is “principle of 
minimum potential energy (principle of minimum strain 
energy)” .
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Variational Method (Ritz) (2/2)
変分法

i
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• Substitute the following approx. solution into I(u), 
and calculate coefficients ai under the condition 
where IM=I(uM) provides extreme values, then uM
is obtained:

• Variational method is theoretical method, and 
can be only applied to differential equations, 
which has equivalent variational problem.
– In this class, we mainly use MWR
– Brief overview of Ritz method will given later today.
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Finite Element Method (FEM)
有限要素法

• Entire region is discretized into fine 
elements（要素）, and the following 
approximation is applied to each 
element: 

i

M

i
iM au 

1

• MWR or Variational Method is applied to each 
element

• Each element matrix is accumulated to global 
matrix, and solution of obtained linear equations 
provides approx. solution of PDE.

• Details of FEM will be provided after next week
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Example of MWR (1/3)

• Thermal Equation
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Example of MWR (2/3)

• Multiply weighting function wi, and apply integration 
over V: 

0 dVRw
V

i

• If a set of weighting function wi is a set of n
different functions, the above integration provides 
a set of n linear equations:
• # trial/test functions = # weighting functions  
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Example of MWR (3/3)

• Matrix form of the equations is described 
as follows: 
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Actual approach is slightly different from this
(more detailed discussions after next week)
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Various types of MWR’s

• Various types of weighting functions

• Collocation Method 選点法

• Least Square Method 最小自乗法

• Galerkin Method ガラーキン法
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Collocation Method
• Weighting function: Dirac’s Delta Function 

 ixx  iw x：location

• In collocation method, R (residual) is set to 0 at n
collocation points by feature of Dirac’s Delta Fn. : 

 
ixxixx  |RdVR

V



 
   








1,00

0

dzzzifz

zifz





• If n increases, R approaches to 0 over entire 
domain.
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Least Square Method
• Weighting function: 

i
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• Minimize the following integration according to ai
(unknowns): 
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Galerkin Method

• Weighting Function = Test/Trial Function: 

iiw 

• Galerkin, Boris Grigorievich 
– 1871-1945
– Engineer and Mathematician of Russia
– He got a hint for Galerkin Method while 

he was imprisoned because of anti-
czarism (1906-1907).
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Example (1/2)

• Governing Equation 

)10(02

2

 xxu
dx

ud

• Boundary Conditions: Dirichlet
0@0  xu
1@0  xu

• Exact Solution

xxu 
1sin

sin
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Exact Solution xxu 
1sin

sin
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Example (2/2)
• Assume the following approx. solution: 

22112
2

121 )1()1())(1(  aaaxxaxxxaaxxu

• Residual is as follows: 

)1(),1( 2
21 xxxx 
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32
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21 )62()2(),,( axxxaxxxxaaR 

• Let’s apply various types of MWR to this equation
– We have two unknowns (a1, a2), therefore we need two 

independent weighting functions.

Test/trial function satisfies u=0@x=0,1
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Collocation Method
• n=2，x=1/4，x=1/2 for collocation points:

• Solution:
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Least Square Method
• Weighting functions, Residual:

• Solution:
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Galerkin Method
• Weighting functions, Residual:

• Results: 
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Results

• Galerkin Method provides the most accurate solution
– If functional exists, solutions of variational method and 

Galerkin method agree.
• A kind of analytical solution (later of this material)

• Many commercial FEM codes use Galerkin method.
• In this class, Galerkin method is used.
• Least-square may provide robust solution in Navier-

Stokes solvers for high Re.

X Exact Collocation Least Square Galerkin 
0.25 0.04401 0.04493 0.04311 0.04408 
0.50 0.06975 0.07143 0.06807 0.06944 
0.75 0.06006 0.06221 0.05900 0.06009 
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Homework (1/2)
• Apply the following two method is the next page to 

the same equations:
– Method of Moment
– Sub-Domain Method
– Results at x=0.25, 0.50, 0.75

• Compare the results of “collocation method” on 
“non-collocaion points” with exact solution
– Explain the behavior 
– Try different collocation points
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Homework (2/2)

• Method of Moment（モーメント法）

)1(1   iw i
i x

– Weighting functions ?

• Sub-Domain Method（部分領域法）

– Domain V is divided into subdomains Vi (i=1-n), and 
weighting functions wi are given as follows:






0
1

iw
for points in Vi

for points out of Vi

– Two unknowns, two sub domains
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• Numerical Method for PDE (Method of Weighted 
Residual)

• Gauss-Green’s Theorem
• Numerical Method for PDE (Variational Method)
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Gauss’s Theorem
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• 3D （x,y,z）
• Domain V surrounded by smooth closed 

surface S
• 3 continuous functions defined in V :

– U(x,y,z)，V(x,y,z)，W(x,y,z)
• Outward normal vector n on surface S: 

– nx，ny，nz: direction cosine

V

S
n



FEM-intro 32

Proof of Gauss’s Theorem (1/3)
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Proof of Gauss’s Theorem (2/3)
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Proof of Gauss’s Theorem (3/3)
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Green’s Theorem (1/2)
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Green’s Theorem (2/2)
• (cont.)

• Finally:
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• Appears often after next week
– From 2nd order differentiation to 1st order differentiation. 

Gradient of B to the direction of normal vector
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In Vector Form

• Gauss’s Theorem

• Green’s Theorem
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• Numerical Method for PDE (Method of Weighted 
Residual)

• Gauss-Green’s Theorem
• Numerical Method for PDE (Variational Method)
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Variational Method (Ritz) (1/2)
変分法

• It is widely known that exact solution u provides 
extreme values (max/min) of “functional：汎関数” I(u) 
– Euler equation: differential equation satisfied by u, if 

functional has extreme values（極値）

– Euler equation is satisfied, if u provides extreme values of 
I(u).

– provide extreme values：停留させる（or stationarize）
• For example, functional, which corresponds to 

governing equations of linear elasticity (principle of 
virtual work, equilibrium equations), is “principle of 
minimum potential energy (principle of minimum strain 
energy)” .
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Variational Method (Ritz) (2/2)
変分法

i

M

i
iM au 

1

• Substitute the following approx. solution into I(u), 
and calculate coefficients ai under the condition 
where IM=I(uM) provides extreme values, then uM
is obtained:

• Variational method is theoretical method, and 
can be only applied to differential equations, 
which has equivalent variational problem.
– In this class, we mainly use MWR
– Brief overview of Ritz method will given later today.
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Application of Variational Method (1/5)
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• Consider the following integration I(u) in 2D-domain 
V, where u(x,y) is unknown function of x and y:

S

V

• I(u) is “functional（汎関数）” of function u
• u* is a twice continuously differentiable function and 

minimizes I(u).  is an arbitrary function which 
satisfies =0 at boundary S, and  is a parameter. 
Consider the following equation:  

Q: known value
0u at boundary S

     yxyxuyxu ,,, *  
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Application of Variational Method (2/5)

   *uIuI 

• At this stage, the following condition is necessary:
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• Assume that functional I(u*+) is a function of . 
Functional I provides minimum value, if =0. 
Therefore, the following equation is obtained:

• According to the definition of functional I(u), 
following equation is obtained

0
**
























 dVQ
yy

u
xx

u

V





FEM-intro 43

  0
0

* 








uI

0
**
























 dVQ
yy

u
xx

u

V



    





QuQQu 






 *

  dVQu
y
u

x
uuI

V 
































  2
2
1

22

     yxyxuyxu ,,, *  

 

yy
u

y
u

xx
u

x
u

xx
u

xx
u

x
u

x
u

x
u

x
u

x
u


























































































































































*2*2

**2

2
1,

2
10,

,
2
1



FEM-intro 44

Application of Variational Method (3/5)
• Apply Green’s theorem on 1st and 2nd term of LHS, 

and apply integration by parts, then following 
equation is obtained:（A=, B=u*）：

• At boundary S, =0: 
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Gradient of u* in the direction 
of normal vector
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Green’s Theorem
• （A=, B=u*）：
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Application of Variational Method (4/5)
• Equation (A) is called “Euler equation”

– Necessary condition of u*, which minimizes functional I(u), is 
that u* satisfies the Euler equation.

• Sufficient condition:
– Assume that u* is solution of the Euler equation and =u*
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I=0
First Variation
第一変分

I2≧0
Second Variation
第二変分
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Application of Variational Method (5/5)
• It has been proved that u* (solution of Euler equation) 

minimizes functional I(u).
   *** uIuuI 

• Therefore, boundary value problem by Euler equation 
(A) with B.C. (u=0) is equivalent to variational problem.
– Solving equivalent variational problem provides solution of 

Euler equation (Poission equation in this case)
– Functional must exist !

*u
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Approx. by Variational Method (1/4)
• Functional

  dxxuu
dx
duuI  
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2
1

• Boundary Condition
0@0  xu
1@0  xu

• Obtain u, which “stationalizes” functional I(u) under 
this B.C.
– Corresponding Euler equation is as follows (same as 

equation in p.21):

)10(02
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 xxu
dx

ud (B-1)
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Approx. by Variational Method (2/4)
• Assume the following test function with n-th order for 

function u, which is twice continuously differentiable:

   12
3211  n

nn xaxaxaaxxu 

• If we increase the order of test function, un is closer 
to exact solution u. Therefore, functional I(u) can be 
approximated by I(un):
– If I(un) stationarizes, I(u) also stationarizes.

• We need to obtain set of unknown coefficients ak, 
which satisfies the following stationary condition:

   nk
a
uI

k

n ~10 

 (B-3)

(B-2)
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Ritz Method

• Equation (B-3) is linear equations for a1-an.
• If this solutions is applied to equation (B-2), 

approximate solution, which satisfies Euler equation 
(B-1), is obtained.
– Approximate solution, but satisfies Euler equation strictly 
（厳密解）

• This type of method using a set of coefficients a1-an is 
called “Ritz Method”.



FEM-intro 51

Approx. by Variational Method (3/4)
• Ritz Method, n=2
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Supplementation for (3/4) (1/3)
• Ritz Method, n=2
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Supplementation for (3/4) (2/3)
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Supplementation for (3/4) (3/3)
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Approx. by Variational Method (4/4)
• Final linear equations are as follows:
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• This result is identical with that of Galerkin Method
– NOT a coincidence !!
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Galerkin Method
• Weighting functions (which satisfy u=0@x=0,1), 

Residual:

• Results: 
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Ritz Method & Galerkin Method (1/4)
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Ritz Method & Galerkin Method (2/4)
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Ritz Method & Galerkin Method (3/4)
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Ritz Method & Galerkin Method (4/4)
• This example is a very special case. But, generally 

speaking, results of Galerkin method and Ritz 
method agree, if functional exists.

• Although Ritz method provides approx. solution, that 
satisfies Euler equation in strict sense. Therefore, 
solution of Ritz method is closer to exact solution.
– This is the main reason that Galerkin method is accurate.

• Please just remember this.

• This relationship between Ritz and Galerkin is not 
correct if functional does not exist.
– In these cases, Galerkin method is not necessarily the 

best method from the viewpoint of accuracy and 
robustness.


