Keywords

- 1D Steady State Heat Conduction Problems
- Galerkin Method
- Linear Element

FEM1D

Preconditioned Conjugate Gradient Method

1D Linear Element (1/4) 一次元線形要素

- 1D Linear Element
 - Length= L
 - Node (Vertex)
 - Element
 - $-T_i$ Temperature at *i*
 - $-T_j$ Temperature at j
 - Temperature *T* on each element is linear function of *x* (Piecewise Linear):

$$T = \alpha_1 + \alpha_2 x$$

1D Linear Elem.: Shape Function (3/4)

- Number of Shape Functions = Number of Vertices of Each Element
 - $-N_i$: Function of Position
 - A kind of Test/Trial Functions

$$N_i = \left(\frac{X_j - x}{L}\right), \quad N_j = \left(\frac{x - X_i}{L}\right)$$

- Linear combination of shape functions provides displacement "in" each element
 - Coef's (unknows): Temperature at each node

$$T = N_i T_i + N_j T_j \longleftarrow$$

$$\Psi_i$$
$$\Psi_i$$

- Trial/Test Function (known function of position, defined in domain and at boundary. "Basis" in linear algebra.
- *a_i* Coefficients (unknown)

Integration over Each Element: {*f*} (2/2) $N_i = \left(\frac{X_j - x}{L}\right), \quad N_j = \left(\frac{x - X_i}{L}\right) \qquad \frac{dN_i}{dx} = \left(\frac{-1}{L}\right), \quad \frac{dN_j}{dx} = \left(\frac{1}{L}\right)$

$$\int_{V} \dot{Q}[N]^{T} dV = \dot{Q}A \int_{0}^{L} \begin{bmatrix} 1 - x/L \\ x/L \end{bmatrix} dx = \frac{\dot{Q}AL}{2} \begin{cases} 1 \\ 1 \end{cases}$$

Heat Generation (Volume)

$$\int_{S} \overline{q} [N]^{T} dS = \overline{q} A \Big|_{x=L} = \overline{q} A \begin{cases} 0 \\ 1 \end{cases}, \quad \overline{q} = -\lambda \frac{dT}{dx}$$

Preconditioning for Iterative Solvers

- Convergence rate of iterative solvers strongly depends on the spectral properties (eigenvalue distribution) of the coefficient matrix A.
 - Eigenvalue distribution is small, eigenvalues are close to 1
 - In "<u>ill-conditioned</u>" problems, "<u>condition number</u>" (ratio of max/min eigenvalue if A is symmetric) is large.
- A preconditioner M (whose properties are similar to those of A)transforms the linear system into one with more favorable spectral properties
 - In "<u>ill-conditioned</u>" problems, "<u>condition number</u>" (ratio of max/min eigenvalue if A is symmetric) is large.
 - M transforms original equation Ax=b into A'x=b' where A'=M⁻¹A, b'=M⁻¹b
 - If M~A, M⁻¹A is close to identity matrix.
 - If M⁻¹=A⁻¹, this is the best preconditioner (a.k.a. Gaussian Elimination)

Remedies for Higher Accuracy

- Finer Meshes
- Higher Order Shape/Interpolation Function(高次補 間関数・形状関数)
 - Higher-Order Element(高次要素)
 - Linear-Element, 1st-Order Element: Lower Order(低次要素)
- Formulation which assures continuity of n-th order derivatives
 - Cⁿ Continuity(Cⁿ連続性)
- Linear Elements
 - Piecewise Linear
 - C⁰ Continuity
 - Only dependent variables are continuous at element boundary