Keywords

- 1D Steady State Heat Conduction Problems
- Galerkin Method
- Linear Element
- Preconditioned Conjugate Gradient Method

1D Linear Element（1／4）

一次元線形要素
－1D Linear Element
－Length＝L
－Node（Vertex）
－Element

－T_{i} Temperature at i
－$T_{j} \quad$ Temperature at j
－Temperature T on each element is linear function of x（Piecewise Linear）：

$$
T=\alpha_{1}+\alpha_{2} x
$$

1D Linear Elem.: Shape Function (3/4)

- Number of Shape Functions
= Number of Vertices of Each Element
- N_{i} : Function of Position
- A kind of Test/Trial Functions

$$
N_{i}=\left(\frac{X_{j}-x}{L}\right), \quad N_{j}=\left(\frac{x-X_{i}}{L}\right)
$$

- Linear combination of shape functions provides displacement "in" each element
- Coef's (unknows): Temperature at each node

$$
T=N_{i} T_{i}+N_{j} T_{j} \leftrightarrow \quad T_{M}=\sum_{i=1}^{M} a_{i} \Psi_{i}
$$

Trial/Test Function (known function of position, defined in domain and at boundary. "Basis" in linear algebra.
$a_{i} \quad$ Coefficients (unknown)

Integration over Each Element: $\{f\}(2 / 2)$

$$
N_{i}=\left(\frac{X_{j}-x}{L}\right), \quad N_{j}=\left(\frac{x-X_{i}}{L}\right) \quad \frac{d N_{i}}{d x}=\left(\frac{-1}{L}\right), \quad \frac{d N_{j}}{d x}=\left(\frac{1}{L}\right)
$$

$$
\int_{V} \dot{Q}[N]^{T} d V=\dot{Q} A \int_{0}^{L}\left[\begin{array}{c}
1-x / L \\
x / L
\end{array}\right] d x=\frac{\dot{Q} A L}{2}\left\{\begin{array}{l}
1 \\
1
\end{array}\right\} \begin{aligned}
& \text { Heat Generation } \\
& \text { (Volume) }
\end{aligned}
$$

Preconditioning for Iterative Solvers

- Convergence rate of iterative solvers strongly depends on the spectral properties (eigenvalue distribution) of the coefficient matrix \mathbf{A}.
- Eigenvalue distribution is small, eigenvalues are close to 1
- In "ill-conditioned" problems, "condition number" (ratio of max/min eigenvalue if \mathbf{A} is symmetric) is large.
- A preconditioner \mathbf{M} (whose properties are similar to those of A)transforms the linear system into one with more favorable spectral properties
- In "ill-conditioned" problems, "condition number" (ratio of $\mathrm{max} / \mathrm{min}$ eigenvalue if \mathbf{A} is symmetric) is large.
- M transforms original equation $A x=b$ into $A^{\prime} x=b{ }^{\prime}$ where $A^{\prime}=M^{-1} A, b^{\prime}=M^{-1} b$
- If $\mathbf{M} \sim A, M^{-1} A$ is close to identity matrix.
- If $\mathbf{M}^{-1}=A^{-1}$, this is the best preconditioner (a.k.a. Gaussian Elimination)

Remedies for Higher Accuracy

－Finer Meshes
－Higher Order Shape／Interpolation Function（高次補間関数 \cdot 形状関数）

- Higher－Order Element（高次要素）
- Linear－Element， $1^{\text {st＿－Order Element：Lower Order（低次要 }}$素）
－Formulation which assures continuity of n－th order derivatives
－Cn Continuity（Cn連続性）
－Linear Elements
－Piecewise Linear
－ C^{0} Continuity
－Only dependent variables are continuous at element boundary

