線形ソルバー

2011年夏季集中講義 中島研吾

並列計算プログラミング(616-2057)・先端計算機演習(616-4009)

TOC

- 線形ソルバーの概要
 - 直接法
 - 反復法
 - 共役勾配法(Conjugate Gradient)
 - 前処理
- 接触問題の例(前処理)
 - Selective Blocking Preconditioning

科学技術計算における大規模線形 方程式の解法

• 多くの科学技術計算は、最終的に大規模線形方程式Ax=bを解 くことに帰着される。

- important, expensive

- アプリケーションに応じて様々な手法が提案されている
 - 疎行列(sparse), 密行列(dense)
 - 直接法(direct), 反復法(iterative)
 - •本日は、疎行列、反復法について主に扱う。
- 密行列(dense)

- グローバルな相互作用あり: BEM, スペクトル法, MO, MD(気液)

• 疎行列(sparse)

- ローカルな相互作用: FEM, FDM, MD(固), 高速多重極展開付BEM

<u>グループ通信,1対1通信(密行列)</u> 遠隔PE(領域)も含め、多数のPE(領域)との相互作用あり 境界要素法、スペクトル法、MD法

グループ通信, 1対1通信(疎行列) 近接PE(領域)のみとの相互作用 差分法, 有限要素法

「線形ソルバー」にどう向き合うか?

一言で、「線形ソルバー」というが、一つの大きな学問体系を構成しており、短時間で学ぶことは不可能である。

- とは言え、ある程度理解しておく必要はある

- MPIのときと同じであるが、各自の研究に応じた方法を選択する必要がある。
 - 選択ができる程度の知識は必要⇒科学者としてのたしなみ
 - 公開ソフトの利用, 改良
 - 前処理付き反復法であればある程度相談に乗れます。
- 自分も実は1995年頃までは、アプリケーションサイドの「一般 ユーザー」であった。
 - 何とか, 安定に解けないか, 速く解けないか, ということをやっているう ちに, この分野が専門になってしまった。
 - はまると果てしない。

適切な解法の選択が最も重要

- そのためには、自分の解いている問題の特性(数学的特性, 物理的特性)を知ることが重要
- 係数行列の性質
 - 正方行列, MxN行列
 - 疎行列, 密行列
 - 対称, 非対称
 - 対角成分に0を含む?
 - 対角成分の絶対値は非対角成分と比較して大きい?

公開ソフト

- ACTS (Advanced CompuTational Software) Collection
 - <u>http://acts.nersc.gov/</u>
 - US-DOEのプロジェクトで開発された様々なライブラリ
 - SuperLU, PETSc, Aztec
- HPC-MW
 - <u>http://hpcmw.tokyo.rist.or.jp/</u>
 - 並列反復法ライブラリ

参考書

- J.J.Dongarra et al. "Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods", SIAM, 1994.(邦訳:長谷川他「反復法Templates」朝倉書店, 1995)
- http://www.netlib.org/templates/index.html
 - template.pdf/ps/html:本そのもの
 - サンプルプログラム等も上記URLから取れる。

直接法(Direct Method)

- Gaussの消去法,完全LU分解
 逆行列A⁻¹を直接求める
- 利点
 - 安定, 幅広いアプリケーションに適用可能
 - Partial Pivoting
 - 疎行列, 密行列いずれにも適用可能
- 欠点
 - 反復法よりもメモリ,計算時間を必要とする
 - 密行列の場合, O(N³)の計算量
 - 大規模な計算向けではない
 - O(N²)の記憶容量, O(N³)の計算量

Partial Pivoting(ピボットの部分選択)

- LU分解を実施する場合、各段階で適用される対角成分A_{kk} をピボット(pivot)という。
- 消去のある段階でピボットが0となると、ゼロ割が生じ、計算 続行が不可能となる。

- ピボットの絶対値が非常に小さい場合も同様

```
do i= 2, n

do k= 1, i-1

a_{ik} := a_{ik}/a_{kk}

do j= k+1, n

a_{ij} := a_{ij} - a_{ik}*a_{kj}

enddo

enddo

enddo
```

- ピボットの部分選択
 - 絶対値最大の成分がピボットの位置
 に来るように行を入れ替える。
 - もとの連立一次方程式におけるK行と L行の入れ替えに相当する。

並列直接法ライブラリ

- ScaLAPACK
 - <u>http://www.netlib.org/scalapack/</u>
 - ACTSの一部でもある。
 - 密行列, 一般, 幅広い応用分野
 - LAPACKの並列版
 - TOP500 List
- SuperLU
 - http://acts.nersc.gov/superlu/
 - Lawrence Berkeley National Laboratory
 - 疎行列に対応, FORTRAN/Cインタフェース
- いずれも「partial pivoting」に対応

反復法(Iterative Method)

- 定常(stationary)法
 - 反復計算中, 解ベクトル以外の変数は変化せず
 - SOR, Gauss-Seidel, Jacobiなど
 - 概して遅い
- 非定常(nonstationary)法
 - 拘束, 最適化条件が加わる
 - Krylov部分空間(subspace)への写像を基底として使用するため, Krylov部分空間法とも呼ばれる
 - CG(Conjugate Gradient:共役勾配法)
 - BiCGSTAB(Bi-Conjugate Gradient Stabilized)
 - GMRES(Generalized Minimal Residual)

反復法(Iterative Method)(続き)

- 利点
 - 直接法と比較して、メモリ使用量、計算量が少ない。
 - 並列計算には適している。
- 欠点
 - 収束性が、アプリケーション、境界条件の影響を受けやすい。
 - 前処理(preconditioning)が重要。

並列反復法ライブラリ

• PETSc

- <u>http://acts.nersc.gov/petsc/</u>
- Portable, Extensible Toolkit for Scientific Computing
- MPICHを開発したアルゴンヌのグループ
- Aztec
 - http://acts.nersc.gov/aztec/
 - Sandia National Laboratories
 - PETScより玄人向け、と言われている。
- HPC-MW
 - <u>http://hpcmw.tokyo.rist.or.jp/</u>
- 一般的な前処理手法をサポート

代表的な反復法:共役勾配法

- Conjugate Gradient法, 略して「CG」法
 - 最も代表的な「非定常」反復法
- 対称正定値行列(Symmetric Positive Definite: SPD)
 - 任意のベクトル{x}に対して{x}^T[A]{x}>0
 - 全対角成分>0,全固有值>0,全部分行列式>0と同值
 - (ガラーキン法)熱伝導,弾性,ねじり:本コードの場合もSPD
- アルゴリズム
 - 最急降下法(Steepest Descent Method)の変種
 - $x^{(i)} = x^{(i-1)} + \alpha_{i} p^{(i)}$
 - *x*^(*i*): 反復解, *p*^(*i*): 探索ベクトル, *α*_{*i*}: 定数)
 - 厳密解をyとするとき {x-y}^T[A] {x-y}を最小とするような {x}を求める。
 - 詳細は参考文献参照
 - 例えば:森正武「数値解析(第2版)」(共立出版)

前処理(preconditioning)とは?

- 反復法の収束は係数行列の固有値分布に依存
 - 固有値分布が少なく、かつ1に近いほど収束が早い(単位行列)
 - 条件数(condition number)(対称正定)=最大最小固有値の比
 - 条件数が1に近いほど収束しやすい
- もとの係数行列Aに良く似た前処理行列Mを適用することに よって固有値分布を改善する。
 - 前処理行列 M によって元の方程式 Ax=b を A'x=b' へと変換する。 ここで A'=M⁻¹A, b'=M⁻¹b である。
 - A'=M⁻¹Aが単位行列に近ければ良い, ということになる。
- 「前処理」は密行列, 疎行列ともに使用するが, 普通は疎行列 を対象にすることが多い。

前処理付共役勾配法

Preconditioned Conjugate Gradient Method (PCG)

```
Compute r^{(0)} = b - [A] x^{(0)}
for i= 1, 2, ...
        solve [M]z^{(i-1)} = r^{(i-1)}
        \rho_{i-1} = r^{(i-1)} z^{(i-1)}
        if i=1
            p^{(1)} = z^{(0)}
          else
            \beta_{i-1} = \rho_{i-1} / \rho_{i-2}
            p^{(i)} = z^{(i-1)} + \beta_{i-1} z^{(i-1)}
        endif
        q^{(i)} = [A]p^{(i)}
        \alpha_i = \rho_{i-1}/p^{(i)}q^{(i)}
        \mathbf{x}^{(i)} = \mathbf{x}^{(i-1)} + \alpha_i \mathbf{p}^{(i)}
        \mathbf{r}^{(i)} = \mathbf{r}^{(i-1)} - \alpha_i \mathbf{q}^{(i)}
        check convergence |r|
end
```

実際にやるべき計算は:

$$\{z\} = [M]^{-1}\{r\}$$

「近似逆行列」の計算が必要: $[M]^{-1} \approx [A]^{-1}, \quad [M] \approx [A]$

究極の前処理:本当の逆行列 $[M]^{-1} = [A]^{-1}, [M] = [A]$

対角スケーリング:簡単=弱い $[M]^{-1} = [D]^{-1}, [M] = [D]$

ILU(0), IC(0)

- 最もよく使用されている前処理(疎行列用)
 - 不完全LU分解
 - Incomplete LU Factorization
 - 不完全コレスキー分解
 - Incomplete Cholesky Factorization(対称行列)
- 不完全な直接法
 - もとの行列が疎でも、逆行列は疎とは限らない。
 - fill-in
 - もとの行列と同じ非ゼロパターン(fill-in無し)を持っているのが
 ILU(0), IC(0)

ILU(0), IC(0)

- 最もよく使用されている前処理(疎行列用)
 - Incomplete LU Factorization
 - Incomplete Cholesky Factorization(対称行列)

ILU(0) : keep non-zero pattern of the original coefficient matrix

```
do i= 2, n

do k= 1, i-1

if ((i,k) \in NonZero(A)) then

a_{ik} := a_{ik}/a_{kk}

endif

do j= k+1, n

if ((i, j) \in NonZero(A)) then

a_{ij} := a_{ij} - a_{ik}*a_{kj}

endif

enddo

enddo

enddo
```

不完全な直接法

- もとの行列が疎でも、逆行 列は疎とは限らない。
- fill-in
- もとの行列と同じ非ゼロパ ターン(fill-in無し)を持って いるのがILU(0), IC(0)

LU分解法:完全LU分解法

直接法の一種

- 逆行列を直接求める手法
- 「逆行列」に相当するものを保存しておけるので、右辺が 変わったときに計算時間を節約できる
- 逆行列を求める際にFill-in(もとの行列では0であったところに値が入る)が生じる
- 不完全LU分解法
 - Fill-inの発生を制限して,前処理に使う手法
 - 不完全な逆行列, 少し弱い直接法

実例: 差分法による熱伝導等 5点差分

実例: 差分法による熱伝導等 5点差分

完全LU分解したマトリクス ./lu1 とタイプ

6.00 -1.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.000.00 0.00 0.00 -1.006.00 -1.000.00 -1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.006.00 0.00 0.00 -1.000.00 0.00 0.00 0.00 0.00 0.00 -1.000.00 0.00 6.00 -1.00 0.00 -1.000.00 0.00 0.00 0.00 0.00 0.00 -1.00-1.006.00 0.00 0.00 0.00 0.00 0.00 -1.000.00 -1.000.00 0.00 0.00 0.00 -1.006.00 0.00 0.00 -1.000.00 0.00 -1.000.00 0.00 0.00 -1.000.00 0.00 6.00 -1.000.00 -1.000.00 0.00 -1.000.00 -1.000.00 0.00 0.00 0.00 0.00 -1.000.00 -1.006.00 0.00 0.00 0.00 0.00 0.00 -1.000.00 -1.006.00 0.00 0.00 -1.000.00 0.00 6.00 -1.000.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.000.00 0.00 0.00 -1.000.00 -1.006.00 -1.000.00 0.00 0.00 0.00 0.00 0.00 -1.006.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.00

ſ	6.00	-1.00	0.00	-1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	-0.17	5.83	-1.00	-0.17	-1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	-0.17	5.83	-0.03	-0.17	-1.00	0.00	0.00	0.00	0.00	0.00	0.00
	-0.17	-0.03	0.00	5.83	-1.03	0.00	-1.00	0.00	0.00	0.00	0.00	0.00
	0.00	-0.17	-0.03	-0.18	5.64	-1.03	-0.18	-1.00	0.00	0.00	0.00	0.00
	0.00	0.00	-0.17	0.00	-0.18	5.64	-0.03	-0.18	-1.00	0.00	0.00	0.00
	0.00	0.00	0.00	-0.17	-0.03	-0.01	5.82	-1.03	-0.01	-1.00	0.00	0.00
	0.00	0.00	0.00	0.00	-0.18	-0.03	-0.18	5.63	-1.03	-0.18	-1.00	0.00
	0.00	0.00	0.00	0.00	0.00	-0.18	0.00	-0.18	5.63	-0.03	-0.18	-1.00
	0.00	0.00	0.00	0.00	0.00	0.00	-0.17	-0.03	-0.01	5.82	-1.03	-0.01
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.18	-0.03	-0.18	5.63	-1.03
Ļ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.18	0.00	-0.18	5.63

もとのマトリクス

LU分解したマトリクス

[L][U]同時に表示 [L]対角成分(=1)省略 (fill-inが生じている。も ともと0だった成分が非 ゼロになっている)

不完全LU分解したマトリクス(fill-in無し)

不完全LU分解した マトリクス(fill-in無し) [L][U]同時に表示 [L]対角成分(=1)省略

6.00	-1.00	0.00	-1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-0.17	5.83	-1.00	0.00	-1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	-0.17	5.83	0.00	0.00	-1.00	0.00	0.00	0.00	0.00	0.00	0.00
-0.17	0.00	0.00	5.83	-1.00	0.00	-1.00	0.00	0.00	0.00	0.00	0.00
0.00	-0.17	0.00	-0.17	5.66	-1.00	0.00	-1.00	0.00	0.00	0.00	0.00
0.00	0.00	-0.17	0.00	-0.18	5.65	0.00	0.00	-1.00	0.00	0.00	0.00
0.00	0.00	0.00	-0.17	0.00	0.00	5.83	-1.00	0.00	-1.00	0.00	0.00
0.00	0.00	0.00	0.00	-0.18	0.00	-0.17	5.65	-1.00	0.00	-1.00	0.00
0.00	0.00	0.00	0.00	0.00	-0.18	0.00	-0.18	5.65	0.00	0.00	-1.00
0.00	0.00	0.00	0.00	0.00	0.00	-0.17	0.00	0.00	5.83	-1.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.18	0.00	-0.17	5.65	-1.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.18	0.00	-0.18	5.65

完全LU分解した	
マトリクス	
[L][U]同時に表示	
[L]対角成分(=1)省略	
(fill-inが生じている。=	b
ともと0だった成分が非	Ξ
ゼロになっている)	

1	6.00	-1.00	0.00	-1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	-0.17	5.83	-1.00	-0.17	-1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	-0.17	5.83	-0.03	-0.17	-1.00	0.00	0.00	0.00	0.00	0.00	0.00
	-0.17	-0.03	0.00	5.83	-1.03	0.00	-1.00	0.00	0.00	0.00	0.00	0.00
	0.00	-0.17	-0.03	-0.18	5.64	-1.03	-0.18	-1.00	0.00	0.00	0.00	0.00
	0.00	0.00	-0.17	0.00	-0.18	5.64	-0.03	-0.18	-1.00	0.00	0.00	0.00
	0.00	0.00	0.00	-0.17	-0.03	-0.01	5.82	-1.03	-0.01	-1.00	0.00	0.00
	0.00	0.00	0.00	0.00	-0.18	-0.03	-0.18	5.63	-1.03	-0.18	-1.00	0.00
ļ	0.00	0.00	0.00	0.00	0.00	-0.18	0.00	-0.18	5.63	-0.03	-0.18	-1.00
	0.00	0.00	0.00	0.00	0.00	0.00	-0.17	-0.03	-0.01	5.82	-1.03	-0.01
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.18	-0.03	-0.18	5.63	-1.03
\mathbf{k}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.18	0.00	-0.18	5.63

解の比較:ちょっと違う

-0.17 5.83 -1.00 0.00 -1.00 0.00	6.00	-1.00	0.00	-1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00 -0.17 5.83 0.00 0.00 -1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.17 0.00 0.00 5.83 -1.00 0.00 -1.00 0.00	-0.17	5.83	-1.00	0.00	-1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-0.17 0.00 0.00 5.83 -1.00 0.00 -1.00 0.00	0.00	-0.17	5.83	0.00	0.00	-1.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00 -0.17 0.00 -0.17 5.66 -1.00 0.00 -1.00 0.00	-0.17	0.00	0.00	5.83	-1.00	0.00	-1.00	0.00	0.00	0.00	0.00	0.00
0.00 -0.17 0.00 -0.18 5.65 0.00 0.00 -1.00 0.00	0.00	-0.17	0.00	-0.17	5.66	-1.00	0.00	-1.00	0.00	0.00	0.00	0.00
0.00 0.00 -0.17 0.00 0.00 5.83 -1.00 0.00 -1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.18 0.00 -0.17 5.65 -1.00 0.00 -1.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.18 0.00 -0.18 5.65 0.00 0.00 -1.00 0.00 -1.00 0.00 -1.00 0.00 -1.00 0.00 -1.00 0.00 -1.00 0.00 -1.00 0.00 -1.00 0.00 -1.00 0.00 -1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.18 0.00 -0.17 5.65 -1.00 0.000 0.000 0.000 0.000 0.000 0.000 -0.18 0.000 -0.18 0.00 -0.18 0.00 -0.18 5.65 <	0.00	0.00	-0.17	0.00	-0.18	5.65	0.00	0.00	-1.00	0.00	0.00	0.00
0.00 0.00 0.00 -0.18 0.00 -0.17 5.65 -1.00 0.00 -1.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.18 0.00 -0.18 5.65 0.00 0.00 -1.00 -1.00 0.00 0.00 0.00 0.00 -0.18 0.00 -0.18 5.65 0.00 0.00 -1.00 0.00 0.00 0.00 0.00 0.00 -0.17 0.00 0.00 5.83 -1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.18 0.00 -0.17 5.65 -1.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.18 0.00 -0.18 5.65 0.00 0.00 0.00 0.00 0.00 0.00 -0.18 0.00 -0.18 5.65	0.00	0.00	0.00	-0.17	0.00	0.00	5.83	-1.00	0.00	-1.00	0.00	0.00
0.00 0.00 0.00 0.00 -0.18 0.00 -0.18 5.65 0.00 0.00 -1.00 0.00 0.00 0.00 0.00 0.00 -0.17 0.00 0.00 5.83 -1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.18 0.00 -0.17 5.65 -1.00 0.00 0.00 0.00 0.00 0.00 -0.18 0.00 -0.17 5.65 -1.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.18 0.00 -0.18 5.65	0.00	0.00	0.00	0.00	-0.18	0.00	-0.17	5.65	-1.00	0.00	-1.00	0.00
0.00 0.00 0.00 0.00 0.00 -0.17 0.00 0.00 5.83 -1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.18 0.00 -0.17 5.65 -1.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.18 0.00 -0.18 5.65	0.00	0.00	0.00	0.00	0.00	-0.18	0.00	-0.18	5.65	0.00	0.00	-1.00
0.00 0.00 0.00 0.00 0.00 0.00 -0.18 0.00 -0.17 5.65 -1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.18 0.00 -0.18 0.00 -0.18 5.65	0.00	0.00	0.00	0.00	0.00	0.00	-0.17	0.00	0.00	5.83	-1.00	0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.18 0.00 -0.18 5.65	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.18	0.00	-0.17	5.65	-1.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.18	0.00	-0.18	5.65

不完全LU分解

												_
-1.00	0.00	-1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	i i	1.00
5.83	-1.00	-0.17	-1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		2.00
-0.17	5.83	-0.03	-0.17	-1.00	0.00	0.00	0.00	0.00	0.00	0.00		3.00
-0.03	0.00	5.83	-1.03	0.00	-1.00	0.00	0.00	0.00	0.00	0.00		4.00
-0.17	-0.03	-0.18	5.64	-1.03	-0.18	-1.00	0.00	0.00	0.00	0.00		5.00
0.00	-0.17	0.00	-0.18	5.64	-0.03	-0.18	-1.00	0.00	0.00	0.00		6.00
0.00	0.00	-0.17	-0.03	-0.01	5.82	-1.03	-0.01	-1.00	0.00	0.00		7.00
0.00	0.00	0.00	-0.18	-0.03	-0.18	5.63	-1.03	-0.18	-1.00	0.00		8.00
0.00	0.00	0.00	0.00	-0.18	0.00	-0.18	5.63	-0.03	-0.18	-1.00		9.00
0.00	0.00	0.00	0.00	0.00	-0.17	-0.03	-0.01	5.82	-1.03	-0.01		10.00
0.00	0.00	0.00	0.00	0.00	0.00	-0.18	-0.03	-0.18	5.63	-1.03		11.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.18	0.00	-0.18	5.63		12.00

6.00

-0.17

0.00 -0.17

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

ILU(0), IC(0) 前処理

- Fill-inを全く考慮しない「不完全な」分解
 記憶容量,計算量削減
- これを解くと「不完全な」解が得られるが、本来の解とそれほどずれているわけではない
 - 問題に依存する

大規模線形ソルバーの動向

- 反復法がより広く使用されるようになりつつある
 - 100コアを超えるような並列システムでは直接法は並列性能が出ない:逆にそれより小さければ直接法でもOK(の場合もある)ということになる。
 - 密行列も反復法で解くような試みがなされている。
- 密行列を使わないで済ませられるようなアルゴリズムの開発
 高速多重極展開(Fast Multipole)
 - 遠方からの効果をクラスタリング, あるいは無視
 - 密行列
 - メモリースケーラブルではない
- 前処理付き反復法(preconditioned iterative solvers)
 - 安定した前処理の必要性
 - 安定した前処理は概して「並列化」が困難

三次元弾性解析問題の例

3×32×32×32=98,304 DOF 一様物性,境界条件 条件は良い問題 1 PE

- 計算結果(ε=10⁻⁸, cenju)
 ILU(0):
 - Block Scaling:
 - Point Jacobi(対角スケーリング)
 - 前処理無し

82回, 12.22秒 279回, 11.59秒 283回, 11.35秒 298回, 11.65秒

三次元弾性解析 3自由度/節点をブロックとして扱う

線形ソルバーの概要

- 直接法
- 並列法
- 共役勾配法(Conjugate Gradient)
- 前処理
- 接触問題の例(前処理)
 - Selective Blocking Preconditioning

接触問題における前処理手法

- 地震発生サイクルシミュレーションにおける接触問題
 - 有限要素法
 - プレート境界における準静的応力蓄積過程
 - 非線形接触問題をNewton-Raphson法によって解く
 - ALM法(Augmented Lagrangean,拡大ラグランジェ法)による拘束
 条件:ペナルティ数

仮想仕事の原理と接触付帯条件 lizuka,M.

内力項 外力項 体積力項

$$\sum_{p} \left[\int_{\Omega_{p}} \lfloor \delta \varepsilon \rfloor \{\sigma\} dV - \int_{\Gamma_{\sigma p}} \lfloor \delta u \rfloor \{f_{o}\} dS - \int_{\Omega_{p}} \lfloor \delta u \rfloor \{r_{o}\} dV \right]$$

$$= -\sum_{kl} \left[\int_{\Gamma_{\sigma ckl}} \lfloor \delta (\bar{\Delta} u) \rfloor \{f_{oc}\} dS \right]$$
接触力項

$$\int_{\Gamma_{\sigma ckl}} \lfloor \delta (\bar{f}_{c}^{n}) \{g\} dS = 0$$
接触面での物体
の重なりは無い
fault surface
(contact surface)

接触問題における前処理手法(続き)

- 仮定
 - 微小変形理論に基づく,静的接触(接触グループに属する節点の座 標は同一)
 - 摩擦なし:対称行列(最終的には摩擦ありの場合も計算)
- 特殊な前処理手法を開発: Selective Blocking.
 - 三次元接触問題において, 効率的に解を得ることのできる, 効率的 な前処理手法である
- 計算
 - 日立SR2201(東大):2001~2002
 - 地球シミュレータ:2002~

Geophysics Application w/Contact Augmented Lagrangean Method with Penalty Constraint Condition for Contact

Iterations

拡大ラグランジェ法 接触問題におけるペナルティー反復回数の関係 Newton-Raphson / Iterative Solver

Penalty λ

予備的計算結果 ペナルティ拘束条件を含む弾性解析 27,888 nodes, 83,664 DOFs, ε=10⁻⁸ Single PE case (Xeon 2.8MHz) GeoFEM's Original Solvers (Scalar Version)

Preconditionin	λ	Iterations	Set-up	Solve	Set-up+Solve	Single	Memory
g			(sec.)	(sec.)	(sec.)	Iteration	Size (MB)
_						(sec.)	
Diagonal	10^{2}	1531	< 0.01	75.1	75.1	0.049	119
Scaling	10^{6}	No Conv.	-	-	-	-	
IC(0)	10^{2}	401	0.02	39.2	39.2	0.098	119
(Scalar Type)	10^{6}	No Conv.	-	-	-	-	
BIC(0)	10^{2}	388	0.02	37.4	37.4	0.097	59
	10^{6}	2590	0.01	252.3	252.3	0.097	
BIC(1)	10^{2}	77	8.5	11.7	20.2	0.152	176
	10^{6}	78	8.5	11.8	20.3	0.152	
BIC(2)	10^{2}	59	16.9	13.9	30.8	0.236	319
	10^{6}	59	16.9	13.9	30.8	0.236	
SB-BIC(0)	10^{0}	114	0.10	12.9	13.0	0.113	67
	10^{6}	114	0.10	12.9	13.0	0.113	

悪条件問題(III-Conditioned Problems)

- 基本的に直接法を使うべき問題。
- しかし、直接法では並列計算において限界がある。
- 安定した前処理手法が必要
- 対策
 - 直接法にできるだけ近い前処理手法
 - 深いFill-in:より多くのFill-inを考慮するということ
 - より正確な逆行列
 - ブロッキングとオーダリング

Deep Fill-in : LU and ILU(0)/IC(0)

Gaussian Elimination

do i= 2, n
do k= 1, i-1

$$a_{ik} := a_{ik}/a_{kk}$$

do j= k+1, n
 $a_{ij} := a_{ij} - a_{ik}*a_{kj}$
enddo
enddo
enddo

ILU(0) : keep non-zero pattern of the original coefficient matrix

```
do i= 2, n

do k= 1, i-1

if ((i,k) \in NonZero(A)) then

a_{ik} := a_{ik}/a_{kk}

endif

do j= k+1, n

if ((i, j) \in NonZero(A)) then

a_{ij} := a_{ij} - a_{ik}*a_{kj}

endif

enddo

enddo

enddo
```


Deep Fill-in : ILU(p)/IC(p)

```
LEV_{ij}=0 if ((i, j) \in NonZero(A)) otherwise LEV_{ij}=p+1
do i=2, n
   do k= 1, i-1
      if (LEV_{ik} \leq p) then
      a_{ik} := a_{ik} / a_{kk}
endif
      do j= k+1, n
         if (\text{LEV}_{ij} = \min(\text{LEV}_{ij}, 1 + \text{LEV}_{ik} + \text{LEV}_{kj}) \leq p) then
        a_{ij} := a_{ij} - a_{ik} a_{ki}
endif
      enddo
   enddo
enddo
```


深いFill-inの効用

- 本ケースでは、有限要素法のため、もともとの係数行 列がかなり「疎=0が多い」
- Fill-inを深くとる、すなわち多くのFill-inを考慮することによって
 - 正確な逆行列に近づく
 - 必要メモリ量,計算量が増加する。ILU(0)からILU(1)で2倍。

Blocking: ILU/ICの前進交代代入

 $M = (L+D)D^{-1}(D+U)$

<u>前進代入:Forward Substitution</u> (L+D)p= g : p= D⁻¹(g-Lp)

<u>後退代入:Backward Substitution</u> (I+ D⁻¹ U)p_{new}= p_{old}: p= p - D⁻¹Up

- D⁻¹を乗ずるところで、対角成分で単に割るのではなく、 3×3ブロックにLU分解(ガウスの消去法)を施す。
 - 三次元固体力学の場合
 - 1節点に強くカップルした変位3成分がある
 - 間接参照が減り、計算効率も上がる

45

DEEP Fill-in

Results in the Benchmark 27,888 nodes, 83,664 DOFs, ε=10⁻⁸ Single PE case (Xeon 2.8MHz) Effect of Blocking/Fill-in

Preconditionin	λ	Iterations	Set-up	Solve	Set-up+Solve	Single	Memory
g			(sec.)	(sec.)	(sec.)	Iteration	Size (MB)
						(sec.)	
Diagonal	10^{2}	1531	< 0.01	75.1	75.1	0.049	119
Scaling	10^{6}	No Conv.	_	-	-	-	
IC(0)	10^{2}	401	0.02	39.2	39.2	0.098	119
(Scalar Type)	10^{6}	No Conv.	_	-	-	-	
BIC(0)	10^{2}	388	0.02	37.4	37.4	0.097	59
	10^{6}	2590	0.01	252.3	252.3	0.097	
BIC (1)	10^{2}	77	8.5	11.7	20.2	0.152	176
	10^{6}	78	8.5	11.8	20.3	0.152	
BIC (2)	10^{2}	59	16.9	13.9	30.8	0.236	319
	10^{6}	59	16.9	13.9	30.8	0.236	
SB-BIC(0)	10^{0}	114	0.10	12.9	13.0	0.113	67
	10^{6}	114	0.10	12.9	13.0	0.113	

BLOCKING

<u>ブロッキングとFill-inレベルの増加により、</u> 困難な問題が解けるようになった。

Selective Blocking 接触問題向けの特別な前処理手法 接触条件により物理的に強くカップルした節点群をブロック化

Selective Blocking 接触問題向けの特別な前処理手法 接触条件により物理的に強くカップルした節点群をブロック化

Selective Blocking 接触問題向けの特別な前処理手法 接触条件により物理的に強くカップルした節点群をブロック化

Block ILU/IC

Selective Blocking/ Supernode

size of each diagonal block depends on contact group size

Results in the Benchmark 27,888 nodes, 83,664 DOFs, ε=10⁻⁸ Single PE case (Xeon 2.8MHz) Selective Blocking:高速,省メモリ

Preconditionin	λ	Iterations	Set-up	Solve	Set-up+Solve	Single	Memory
g			(sec.)	(sec.)	(sec.)	Iteration	Size (MB)
						(sec.)	
Diagonal	10^{2}	1531	< 0.01	75.1	75.1	0.049	119
Scaling	10^{6}	No Conv.	-	-	-	-	
IC(0)	10^{2}	401	0.02	39.2	39.2	0.098	119
(Scalar Type)	10^{6}	No Conv.	-	-	-	-	
BIC(0)	10^{2}	388	0.02	37.4	37.4	0.097	59
	10^{6}	2590	0.01	252.3	252.3	0.097	
BIC(1)	10^{2}	77	8.5	11.7	20.2	0.152	176
	10^{6}	78	8.5	11.8	20.3	0.152	
BIC(2)	10^{2}	59	16.9	13.9	30.8	0.236	319
	10^{6}	59	16.9	13.9	30.8	0.236	
SB-BIC(0)	10^{0}	114	0.10	12.9	13.0	0.113	67
	10^{6}	114	0.10	12.9	13.0	0.113	

Selective Blockingの特徴 BILU(1)/BILU(2)との比較

- [M]⁻¹[A] の固有値から計算される条件数(condition nunmber, 最大最小固有値の比)はBILU(1)より大きいが, 反復あたりの計算量は少ない。
- 1PEを使用したベンチマーク問題における固有値解析
 - Simple Block
 - SWJ (Southwest Japan)

Simple Block Model <u>Description</u>

Preconditioning	λ	Iter #	sec.
BIC(0)	10^{2}	388	202.
	10^{4}	No Conv.	N/A
BIC(1)	10^{2}	77	89.
	10^{6}	77	89.
	10^{10}	78	90.
BIC(2)	10^{2}	59	135.
	10^{6}	59	135.
	10^{10}	60	137.
SB-BIC(0)	10^{2}	114	61.
	10^{6}	114	61.
	10^{10}	114	61.

Simple Block Model

Simple Block Model (к= E_{max}/E_{min}):条件数

Precondit	ioning	$\lambda = 10^2$	$\lambda = 10^{6}$	$\lambda = 10^{10}$
BIC(0)	E _{min}	4.845568E-03	4.865363E-07	4.865374E-11
	E _{max}	1.975620E+00	1.999998E+00	2.000000E+00
	к	4.077170E+02	4.110686E+06	4.110681E+10
BIC(1)	E_{min}	8.901426E-01	8.890643E-01	8.890641E-01
	E _{max}	1.013930E+00	1.013863E+00	1.013863E+00
	к	1.139065E+00	1.140371E+00	1.140371E+00
BIC(2)	E_{min}	9.003662E-01	8.992896E-01	8.992895E-01
	E _{max}	1.020256E+00	1.020144E+00	3.020144E+00
	К	1.133157E+00	1.134388E+00	1.134389E+00
SB-BIC((D) E _{min}	6.814392E-01	6.816873E-01	6.816873E-01
	E _{max}	1.005071E+00	1.005071E+00	1.005071E+00
	κ	1.474924E+00	1.474387E+00	1.474387E+00

South-West Japan (SWJ)

fixed at $z=z_{min}$ + body force

SWJ

Preconditioning	λ	Iter #	sec.
BIC(0)	10^{2}	344	172.
	10^{4}	> 1000	N/A
BIC(1)	10^{2}	201	192.
	10^{4}	256	237.
	10^{6}	256	237.
BIC(2)	10^{2}	176	288.
	10^{4}	229	360.
	10^{6}	230	361.
SB-BIC(0)	10^{2}	297	149.
	10^{4}	295	148.
	10^{6}	295	148.

Preconditioning		$\lambda = 10^2$	$\lambda = 10^4$	$\lambda = 10^6$	$\lambda = 10^{10}$	
BIC(0)	E_{min}	1.970395E-02	1.999700E-04	1.999997E-06	2.000000E-10	
	E _{max}	1.005194E+00	1.005194E+00	1.005194E+00	1.005194E+00	
	К	5.101486E+01	5.026725E+03	5.025979E+05	5.025971E+09	
BIC(1)	E_{min}	3.351178E-01	2.294832E-01	2.286390E-01	2.286306E-01	
	E _{max}	1.142246E+00	1.142041E+00	1.142039E+00	1.142039E+00	
	к	3.408491E+00	4.976580E+00	4.994944E+00	4.995128E+00	
BIC(2)	E _{min}	3.558432E-01	2.364909E-01	2.346180E-01	2.345990E-01	
	E _{max}	1.058883E+00	1.088397E+00	1.089189E+00	1.089196E+00	
	к	2.975702E+00	4.602277E+00	4.642391E+00	4.642800E+00	
SB-BIC	$E(0) E_{\min}$	2.380572E-01	2.506369E-01	2.507947E-01	2.507963E-01	
	E _{max}	1.005194E+00	1.005455E+00	1.005465E+00	1.005466E+00	
	к	4.222491E+00	4.011600E+00	4.009117E+00	4.009092E+00	

並列計算をやってみると・・・ 27 888 nodes 83 664 DOFs 8=10-8								
Single/4PE PE case (Xeon 2.8MHz), λ =10 ⁶								
Single PE								
Block IC(0)	•	2,590 iters,	252.3 sec.					
Block IC(1)	•	78 iters,	20.3 sec.					
Block IC(2)	•	59 iters,	30.8 sec.					
SB-BIC(0)	•	114 iters,	13.0 sec.					
<u>4 PEs</u>								
Block IC(0)	:	4,825 iters,	50.6 sec.					
Block IC(1)	•	2,701 iters,	47.7 sec.					
Block IC(2)	•	2,448 iters,	73.9 sec.					
SB-BIC(0)	•	3,498 iters,	58.2 sec.					

• 反復回数が増加して計算時間がかかってしまう・・・

- Selective Block内の節点が違う領域にばらばらに分割された場合

並列ILU,並列IC

IC分解、ILU分解は本来並列化がしにくい処理である

 $\begin{array}{ll} \text{LEV}_{ij} = 0 \ \text{if} \ ((i, j) \in \text{NonZero}(A)) \ \text{otherwise} \ \text{LEV}_{ij} = p + 1 \\ \text{do } i = 2, \ n \\ \text{do } k = 1, \ i - 1 \\ \text{if} \ (\text{LEV}_{ik} \leq p) \ \text{then} \\ a_{ik} \coloneqq a_{ik} / a_{kk} \\ \text{endif} \\ \text{do } j = k + 1, \ n \\ \text{if} \ (\text{LEV}_{ij} = \min(\text{LEV}_{ij}, 1 + \text{LEV}_{ik} + \text{LEV}_{kj}) \leq p) \ \text{then} \\ a_{ij} \coloneqq a_{ij} - a_{ik} \ast a_{kj} \\ \text{endif} \\ \text{enddo} \\ \text{enddo} \\ \text{enddo} \end{array}$

並列ILU,並列IC IC分解, ILU分解は本来並列化がしにくい処理である

- グローバルな計算が必要
- まともに計算しようとすると、通信が非常に多い プログラムになってしまう

局所化処理:ブロックJacobi

- 前処理時には領域外からの影響を考慮しない
 - 並列性は高まるが、前処理としては「弱く」なる
 - 反復回数が増加する可能性あり

領域分割法の工夫

Selectiveブロック内の節点が違う領域に分割されると収束が遅くなる。 Selectiveブロック内の節点が同じ領域の「内点」となるように再領域分割を実施する。+負荷分散

<u>BEFORE</u> repartitioning

Nodes in selective blocks are on separated partition.

<u>AFTER</u> repartitioning

Nodes in selective blocks are on same partition, but no load-balancing.

<u>AFTER</u> load-balancing

Nodes in selective blocks are on same partition, and load-balanced.

再領域分割の効果 Benchmark: 4 PE cases

		ORIG	INAL Partitioning	IMPROVED Partitioning			
Preconditioni	λ Iteratio		ons Set-up+Solve	Iteration	ns Set-up+Solve		
ng		(sec.)		(sec.)			
BIC(0)	10^{2}	703	7.5	489	5.3		
	10^{6}	4825	50.6	3477	37.5		
BIC(1)	10^{2}	613	11.3	123	2.7		
	10^{6}	2701	47.7	123	2.7		
BIC(2)	10^{2}	610	19.5	112	4.7		
	10^{6}	2448	73.9	112	4.7		
SB-BIC(0)	10^{0}	655	10.9	165	2.9		
	10^{6}	3498	58.2	166	2.9		

Results on Hitachi SR2201 (U.Tokyo) Parallel Performance of SB-BIC(0)-CG NX1=NX2=70, NY=40, NZ1=NZ2=70, **Repartitioned.** 2,471,439 DOF, 784,000 Elements, <u>λ/E=10⁶</u> Iterations/CPU time until convergence (ε=10⁻⁸)

Precon-		16	32	48	64	96	144	192	256	Memory
ditioning		PEs	Size							
										(GB)
BIC(0)	Iterations	14459	14583	15018	15321	15523	15820	16084	16267	
	sec.	13500	7170	4810	3630	2410	1630	1270	1230	3.10
	Speed-up	16	30	45	60	90	133	170	211	
BIC(1)	Iterations			379	390	402	424	428	452	
	sec.	N/A	N/A	236	175	119	81	62	48	8.39
	Speed-up			48	65	95	140	183	236	
BIC(2)	Iterations					364	387	398	419	
	sec.	N/A	N/A	N/A	N/A	212	140	112	86	14.4
	Speed-up					96	145	182	217	
SB-	Iterations	511	524	527	538	543	567	569	584	
BIC(0)	sec.	555	295	193	144	96	64	48	38	3.52
~ ~	Speed-up	16	30	46	62	92	139	185	235	

Parallel Performance of SB-BIC-CG $\lambda/E=10^{6}$, 16-512 PEs, Entire Prob. Size Fixed.

IBM BG/L Prototype

IBM SP-3/Seaborg: type-2A

より一般的な問題

- 大すべりで、接触面が移動する場合。
- 元々,接触面の節点位置がずれている場合
 - 機械部品(はめ込み,ねじ止め)の解析で多用される。各部分を 別々にメッシュ生成するのでこのようなケースは多い。
- 前項で述べたような特殊な領域分割は適用が困難な場合もある。

対策:領域間オーバーラップの拡張

67

まとめ

- 線形ソルバー
 - 密行列, 疎行列
 - 直接法, 反復法
- 前処理付き反復法の例: 接触問題
 - 問題の特性(物理的,数学的)に基づいた前処理手法
 - SMASH
 - 適切な前処理を施すことによって、安定な解を得られる
 - 並列化
 - 一筋縄では行かない、概して難しい問題ほど並列にはしにくい
- 実問題への適用
 - 既存手法, 公開ライブラリ ⇒ 個別の対応が必要な場合あり